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 Overflow problem 

 The overflow occurs because the width of registers is finite.  

 The overflow occurs when two numbers of n bits each are added and the result 

occupies n+1 digits.  

 An overflow can be detected when the sign of the result is different from the sign of 

the two numbers.  

  The overflow cannot occur when the two numbers have different signs. 

Note:  

In unsigned integer addition, overflow occurs if there is end carry.  

4.2.3 Two's complement 

- Positive number is obtained by conversion to natural binary.  

- The 2's complement of negative number equals its 1's complement + 1  

Example:  convert the following values  to 8- +12 and -35   

 

 +12= (00001100)2 

 Positive value of -35 is +35 =(00100011) 2 ,  of -35       

(11011100)2   

The 2's complement of -35= (11011100)2 +1 = (11011101)2   

Question:  find the same values into 16-bit 2  

Answer: 

 +12= (0000000000001100)2 

 Positive value of -35 is +35 =(0000000000100011) 2 ,   

of -35         (1111111111011100)2   

The 2's complement of -35=  (1111111111011100)2  +1 = (1111111111011101)2 

 

The range of numbers that can be represented by n-bit 2's complement is 

                                                 [-2
n-1

, + (2
n-1

-1)] 

Note: 

The easiest way to obtain the 2's complement of a negative number is by starting from LSB ( 

the positive value), leaving all the 0s and the first 1 unchanged and complement all the 

remaining bits. 

Example: convert the following values to 8- -24 and -19   

                  +24= (00011000)                                              +19=(00010011)2      

                  -24=  (11101000)2                                               -19= (11101101)2      
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Exercise 3.1 

Compare the signed integers types in C++ and java  

Solution:  

C++ JAVA size Range 

 --------- byte 8 bits [-128 , +127] 

short short 16 bits [-32768 , +32767] 

int int  32 bits [-2147483648 , +2147483647] 

long long 64 bits [-9223372036854775808 , +9223372036854775807] 

 

Exercise 3.2 

1. The program below is written in C++ 

 

 

What is the result after execution of the code? Explain the problem and find a solution.  

5. Real numbers  

A fractional number has two parts:  integer part and decimal part these parts are separated by 

a dot ( . ) called the decimal point.  The problem in fractional number representation is how to 

indicate to the machine the position of the decimal point?  There are two ways to represent 

real numbers: 

                 5.1 Fixed-Point Representation 

In this representation, the most significant bit represents the sign (+/-), the integer part is 

represented on a fixed n bits and the fractional part on a fixed p bits. 

Sign integer part Fractional part 

 1bit             n bits                      p bits 
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Example: assume a 6-bit fractional number with 3 bits for integer part and 2 bits for the  

 Find the representation of the following values       +5.75      -0. 25   -4.125  

 Calculate the range of the possible values   

   Answer:  

 +5.75   = (010111)2 

                        -0. 25   = (100001)2 

                       -4.125  impossible 

                    The range is [-7.75, +7.75] 

[-7.75, -7.50, -  

 

 Fixed-Point advantages  

 Fixed point representation is easy to implement.  

 Arithmetic operations are simple and can be performed faster (like integers) .  

 Fixed-Point drawbacks 

 In fixed point representation, range of representable numbers is limited. 

 Loss of precision.  

 There is no standard for fixed point representation. 

                          5.2 Floating-Point Representation 

Floating point representation is similar to scientific notation. The proper format for 

normalized scientific notation of a number N is   ±a x 10
b  

where  1  a < 10 and b is the 

power of 10. In binary N=±a x 2
b  

 where  1  a < 2 and b is the power of 2.  

Question: express the following numbers in normalized scientific notation 

 637.8               -0.0475              89         - (10101)2      (1101.011)2          

(0.01101)2      (33.476)8   (279.DE3)16    

Answer :  

637.8= +6.378 x10
+2

               -0.0475=-4.75 x10
-2

                89=+8.9 x10
+1

                          

- (10101)2 = - (1.0101)2 x 2
+4

                (1101.011)2 = + (1.101011)2 x 2
+3 

    

(0.01101)2 = + (1.101)2 x 2
-2 

               (33.476)8= (3.3476)8  x 8
+1

                              

(279.DE3)16 = (2.79DE3)16 x 16
+2

       

 

In the early days of computing, each computer constructor (brand) had its own oating point 

format. This had the unfortunate effect that a code that worked perfectly well on one machine 

could crash on another one (portability limited).   
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 IEEE 754 Floating Point representation standard  

IEEE 754 is a technical standard for floating-point representation which was established in 

1985 by the Institute of Electrical and Electronics Engineers (IEEE). IEEE 754 has 3 

basic components: 

1. The Sign:    

2. The Biased exponent  

3. The Mantissa  

 

 IEEE 754 single precision  

The number is expressed as follows: 

bit for sign  

biased (shifted) exponent.  Biased exponent = Real exponent +127. The 

exponent is shifted by 2
8-1 

 1=127. This shift is useful because the exponent can be positive 

or negative.  

 

The following steps provide the method to convert a real number to floating point format: 

1. Convert the number to Binary 

2. Normalize the number under the form  N= (+/- )(1.m)2.2
ER

 

3. Calculate the Biased exponent, BE=RE+ bias= RE+127 

4. Store the sign, BE and the mantissa  in 32 bits 

 

 

 

 

 

 

 

Note:  

Since the first bit of a normalized binary floating point number is always 1 (always exists), we 

don't need to store it explicitly in the memory. This bit is called  .  

 

Examples: convert the following numbers to IEEE 754 single-precision. 

                -3.625                      +65.75                    -0.125   

     

 N=-3.625 

1. Convert to binary                                                    N = -(11.101)2 

2.  Normalize                                                               N = -(1.1101)2 x2
+1 

3. Calculate the Biased exponent , BE= RE+127= 1+127 = 128 

4. Store S, BE and M in 32 bits 

Signe Biased exponent Mantissa  
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                                   1 10000000 11010000000000000000000 

 N=+65.75                     

1. Convert to binary                                                    N = +(1000001.11)2 

2.  Normalize                                                               N = +(1. 00000111)2 x2
+6 

3. Calculate the Biased exponent ,            BE= RE+127= 6+127 = 133 

4. Store S, BE and M in 32 bits 

                                   0 10000101 00000111000000000000000 

 N= -0.125   

1. Convert to binary                                                    N = -(0.001)2 

2.  Normalize                                                               N = +(1. 0)2 x2
-3 

3. Calculate the Biased exponent ,            BE= RE+127= -3+127 = 124 

4. Store S, BE and M in 32 bits 

                                   1 0111100 00000000000000000000000 

 IEEE 754 single precision  decimal

To convert a number written in IEEE754 single precision to decimal: 

1. Calculate the Real exponent,     RE= BE-127 

2. Calculate value = sign ×( 1, mantissa)2 × 2
ER

, with sign = ±1     

3. Convert the value to decimal (polynomial form)           

 

Examples: convert to decimal the following IEEE 754 single-precision numbers. 

                                       

(C0980000)16                (42484000)16    

 

 N=(C0980000)16                 

Convert to binary               N = (1 10000001 00110000000000000000000)2 

1. Calculate the Real exponent,     RE= BE-127 =129-127=+2 

2.  N=-(1.0011)2 x2
+2

 

3. Convert the value to decimal N=-(1.0011)2 x2
+2 

==-(100.11)2  =-4.75 

 

 (42484000)16   = +50.0625           
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 Special Values 

*Zero :   

SIGNE = 0/1                  EXPOSANT = 0                           MANTISSA  

*Infinity (+infinity, -infinity): result of overflow or division by 0 

SIGNE = 0/1                   EXPOSANT =                           MANTISSA  

 *NAN (Not A Number):  undefined values such as:   

(±0) / (±0)                                         

-                                -                         square root of a negative number 

         SIGNE = 0/1                   EXPOSANT =                           MANTISSA   

 

Note:  

 There is a compromise between the size of the mantissa (23 bits) representing the accuracy 

and the size of the exponent (8 bits) representing the range.  

 More digits assigned for the mantissa  higher precision and lower range 

 More digits assigned for the exponent  higher range and lower precision 

Note:  

The IEEE754 standard defines three formats for representing floating point numbers: 

. Single precision on 32 bits        (1bit          8bits      23 bits                Bias= 127) 

. Double precision on  64 bits      (1 bit         11bits    52 bits                Bias= 1023 ) 

. Extended precision on  80 bits    (1 bit        15 bits    64 bit                Bias= 16383 ) 

 IEEE 754  Addition/subtraction operations   

Floating point arithmetic is more complicated than the fixed point.  To calculate A+B (or A-

B) we have to follow these steps: 

1- Write the two numbers in normalized form 

2- Align the exponents (smaller exponent aligned to the larger) 

3- Add/subtract the mantissas 

4- Renormalize if necessary 

 

Examples  

Assume A and B two IEEE 754 single precision  numbers. Calculate A+B , A-B  and B-A 

 

A= 0 10000010 10101000000000000000000 

B= 0 10000001 00100000000000000000000 
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 A+B 

A+B= +(1,10101)2  x2
3
    + (1,001)2  x2

2
  

=    +  ( (1,10101)2  +(0,1001)2  )x2
3  

= (10,00111)2 x2
3

 = (1 ,000111)2 x2
4
   

                                A+B= 0 10000011 00011100000000000000000 

 A-B 

A-B= +(1,10101)2  x2
3
    - (1,001)2  x2

2
  

=    +  ( (1,10101)2  - (0,1001)2  )x2
3  

= (1,00011)2 x2
3

  

                            A-B= 0 10000010 00011000000000000000000 

 B-A 

B-A= (1,001)2  x2
2
 - (1,10101)2  x2

3
     

=   ((0,1001)2 - (1,10101)2 )x2
3  

= -  ( (1,10101)2  - (0,1001)2  )x2
3  

= - (1,00011)2 x2
3

  

                           B-A= 1 10000010 00011000000000000000000 

Note :  

B-A can be obtained directly by flipping the sign of the operation A-B. 

 

6. Characters representation 

numerals 

special characters +,-,*, ? #. The character representation is done by a correspondence table 

specific to each code used.  

There are a number of standards, we can cite examples: 

 EBCDIC (Extended Binary Coded Decimal Interchange Code) : 8-bit encoding, 

mainly used by IBM. 

 ASCII (American Standard Code for Information Interchange): each character on 7 

bits  128 characters 

 Extended ASCII: each character on  8 bits  256 characters 

 Unicode :  

It includes several standards: UTF-8, UTF-16, UTF-

 

Example: use the Extended ASCII table to code the following characters         

                   code (41)16= (01000001)2     

                    code (61)16 =(01100001)  

                   code (3F) 16 =(00111111)2)
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Uppercase letters are represented by codes 41 to 5A and lowercase letters by codes 61 to 7A. By modifying the 6th bit we change from uppercase 

to lowercase. 

 

The ASCII table defines 34 control characters: 


