Chapter3: Data representation

1. Introduction

Data representation is defined as the methods used to represent data in computers. In other
words, it refers to the form in which data is stored and processed.

2. Binary code

There are three main binary coding systems:

2.1 Natural binary code
In this code, numbers are represented in straight binary (b=2). This code is simple and easy
to implement, but it has the disadvantage of changing more binary digits between two

consecutive numbers.

2.2 Gray code (reflected binary)
In Gray code two consecutive numbers differ from each other by only one bit. Gray code is
not suitable for arithmetic operations but it is widely used in digital transmission systems to
aid in error correction (minimizes the occurrence of errors), improves the signal’s quality and
consumes less power.
- Conversion Binary =2 Gray code
The conversion from natural binary to reflected binary (Gray code) is as follows:

- The MSB remains the same as in binary (unchanged)

- Starting from left to right, each bit is added to its neighbor on the right. The sum is
carried over to the lower line which corresponds to the Gray code. Carries are neglected.
Note: the Gray code always has the same number of bits as the natural binary
representation.

Example: consider a 4-digit number written in natural binary (b3b:b;by),, the Gray code

(23228180)qc 15 obtained as follows :

Binary code]7/3 fz Ij fo
Gray code gs 9z g1 9o

Example: convert values 35 and 36 to straight binary and Gray code
Binary 35=(100 011) 36=(100 100),

Gray code 35=(110 010), 36=(110 110),

moussa.semchedine@univ-setif.dz 14

Chapter3: Data representation

Example: write numbers from 0 to 15 in natural binary and Gray code

decimal Binary Gray
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Note: the Gray code is called reflected binary, because the n-1 bits are generated by reflection
(mirror).

- Conversion Gray code - Binary
- The MSB remains the same as in Gray code (unchanged)
- Starting from left to right, each bit of the binary code is added to its diagonal neighbor in
Gray code. The sum is carried over to the lower line which corresponds to the binary code.

Carries are neglected.

Gray code s gz g: go
LA
+ +
Binary code bs b; b, by

Example: convert the Gray (1 1 0 0 1 0)g into decimal
(110010)e=(100011), =35

moussa.semchedine@univ-setif.dz 15

Chapter3: Data representation

2.3 BCD Code (binary coded decimal)
In BCD, each decimal digit is replaced by its 4-bit binary equivalent.

decimal 0 1 2 3 4 5 6 7 8 9

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Example: convert the number 275 into BCD
2= (0010)»

7= (0111)y
5= (0101)y
275= (0010 0111 0101) gcp

The main advantage of BCD is that it allows easy conversion between decimal and binary.
BCD has many important applications especially using digital displays (electronic calculators,
digital clocks, etc.)

3. Data types

3.1 Numeric data
Is a data in the form of numbers that can be used in arithmetic calculations.
- Unsigned Integers (positive numbers). E.g : age, number of students in class,...
- Signed Integers. E.g : temperature,...
- Real numbers. E.g score, weight, size.....
3.2 Alphanumeric data
Set of characters including letters, special characters and numerals that are not used in
calculations. E.g : address, name

4. Integer representation

4.1 Unsigned Integers
Unsigned integers can represent zero and positive integers. Natural binary is used to
represent these numbers.
The range of unsigned integers for n bits register is [0, 2"-1]
Example: write the value 35 as an 8-bits unsigned integer.

35=(00100011),

4.2 Signed Integers

Signed integers can represent zero, positive and negative integers. Three representations had

been proposed for signed integers:

moussa.semchedine@univ-setif.dz 16

Chapter3: Data representation

e Signed-Magnitude representation

¢ Ones' complement representation (1's Complement)

e Two's complement representation (2's Complement)
4.2.1 Signed-Magnitude
- The most significant bit (MSB) is the sign bit, with value of 0 representing positive integer
and 1 negative integer.
- The remaining n-1 bits represent the magnitude (absolute value) of the integer.
The range of numbers that can be represented by n-bit signed-magnitude is

-2"-1),+ 2" -1

Example: convert the following values -15 and +20 into 8-bit Signed-Magnitude numbers.

-15=10001111 +20=0|0010100
Sign Magnitude Sign Magnitude

o Conversion Signed-Magnitude >decimal

Convert the n-1 bits to decimal and introduce (+) if the MSB=0 or (-) otherwise.

Example: the following binary numbers are 8-bit Signed-magnitude numbers. What are the
decimal values?

(00001001),=+9 (10000101), =-5
Question: express all represented Signed-Magnitude numbers, using 4 bits

Answer: see the table below.

Question: perform in 4-bit Signed-Magnitude representation the following operations and

give the decimal results. 5+2 5-2
542 5-2=5+(-2)
0101 0101
+ 0010 + 1010
0111 1111
Correct result +7 incorrect result -7

moussa.semchedine@univ-setif.dz 17

Chapter3: Data representation

e Signed-Magnitude drawbacks
Signed-Magnitude method is very simple, but it has some drawbacks:

e There are two representations of zero (00......... 00) and (10......... 00) which could
lead to inefficiency and confusion. (E.g. to test if a number is 0 or not, the CPU will
need two tests).

e The difficulty of arithmetic operations which are complicated, because of the sign bit
which must be treated separately (designing an appropriate circuit is difficult).

e The sign of both numbers have to be examined before the operation is determined
(addition or subtraction).

e Two separate circuits are required to do the addition and subtraction operations (the

ideal is to use a single adder-subtractor circuit that does both addition and subtraction.)

Signed-M | decimal
0111 +7
0110 +8
0101 +5
0100 +4
o011 +3
o010 +2
o001 +1
o000 +0
1000 -0
1001 -1
1010 -2
1011 -3
1100 -4
1101 -5
1110 -6
1111 -7

4.2.2 One’s complement

- Positive numbers are obtained by conversion to natural binary.

- Negative numbers are obtained by inverting each bit of the positive opposite (0 becomes 1
and 1 becomes 0).

Example: convert the following values to 8-bit 1’s complement +12 and -23

e +12=(00001100)2
. Positive value of -23 is +23 =(00010111),, 1’s complement =2 (11101000);,

moussa.semchedine@univ-setif.dz 18

Chapter3: Data representation

Question: find the same values into 16-bit 1’s complement
Answer:
e +12=(0000000000001100),
. Positive value of -23 is +23 =(0000000000010111), ,
1’s complement = (1111111111101000),
The range of numbers that can be represented by n-bit 1's complement is
-2™-D, + @™ D)
e Conversion 1’s complement = decimal
- Determine whether the number is positive or negative (look at the MSB)
- If the number is positive, convert to decimal

- If the number is negative, complement the number, convert to decimal and introduce

the sign (-)
Example: convert the following 8-bit 1’s complement numbers to decimal
(00001111), (11110011),
(00001111),=+15 (11110011), =-12
Example: convert the following 16-bit 1’s complement numbers to decimal
(1111111111100110), (IT11111111111111),
(1111111111100110), =-25 (IT1111111111111L), =-0

Question: express all represented 1’s complement numbers, using 4 bits

Answer: see the table below.

1’s comp Decimal
0111 +F
0110 +5
0101 +5
O1 00 +4
o011 +3
o010 +2
o001 +1
o000 +0
1111 -0
1110 -1
1101 -2
1100 -3
1011 -4
1010 -5
1001 -5
1000 -7

moussa.semchedine@univ-setif.dz 19

Chapter3: Data representation

e I’s complement addition/ subtraction
Addition in 1’s complement is done as follows:
o Add the two numbers.
o Ifan end carry occurs, add the carry to the result.
Subtraction in 1’s complement is done as follows:

0 Transform the subtraction to the addition of the 1’s complement.

0 Use 1’s complement addition rules.

Example: calculate the following operations using 1's complement form (4-bit)

5+2 -5-2 5 -2 542
5+2 (-5)+(-2) 5+(-2) (-5)+2
. 8(1)2(1) ‘1010 ‘0101 1010
+ 1101 + 1101 +0010
_2;11 0111 0010 1100
+ 1 + 1 =-3
1000 0011
= -7 :+3
Note :

The disadvantage of 1’s complement method is the double representation of zero +0 and — 0.

Question: perform the following operations using 1's complement form (4-bit)

5+4 -5-7
Answer:
514 (-5)H-7)
1
‘0101 + 1838
+000
1001 oo
+ 1
=6
incorrect result 0011

= 43 incorrect

The results are incorrect because +9 and -12 are outside the range [-7, +7]

moussa.semchedine@univ-setif.dz 20

Chapter3: Data representation

e Overflow problem
- The overflow occurs because the width of registers is finite.
- The overflow occurs when two numbers of n bits each are added and the result
occupies n+1 digits.
- An overflow can be detected when the sign of the result is different from the sign of
the two numbers.
- The overflow cannot occur when the two numbers have different signs.
Note:
In unsigned integer addition, overflow occurs if there is end carry.
4.2.3 Two's complement
- Positive number is obtained by conversion to natural binary.
- The 2's complement of negative number equals its 1's complement + 1

Example: convert the following values to 8-bit 2’s complement +12 and -35

e +12=(00001100),
. Positive value of -35 is +35 =(00100011) , , 1’s complement of -35 =>
(11011100),
The 2's complement of -35=(11011100), +1 = (11011101),
Question: find the same values into 16-bit 2’s complement
Answer:
e +12=(0000000000001100),
. Positive value of -35 is +35 =(0000000000100011), ,
1’s complement of -35 =» (1111111111011100),
The 2's complement of -35= (1111111111011100), +1 = (1111111111011101),

The range of numbers that can be represented by n-bit 2's complement is

[-2™, + 2™L1)]
Note:
The easiest way to obtain the 2's complement of a negative number is by starting from LSB (
the positive value), leaving all the Os and the first 1 unchanged and complement all the
remaining bits.

Example: convert the following values to 8-bit 2’s complement -24 and -19
+24=(00011000) +19=(00010011),

224= (11101000), -19= (11101101),

moussa.semchedine@univ-setif.dz 21

Chapter3: Data representation

e Conversion 2’s complement >decimal
- Determine whether the number is positive or negative (look at the MSB).
- If the number is positive, convert to decimal.
- If the number is negative, flip all the bits and add 1 then convert to decimal (introduce
the sign -)
Note:
Another method to obtain the decimal value of 2's complement negative number is to leave
(from the LSB) all the Os and the first 1 unchanged, flip all the remaining bits then convert to
decimal (introduce the sign -)
Example: convert the following 8-bit 2’s complement numbers to decimal
(00001110), (10001000), (11101110),
. (00001110),=+14
. (10001000), =-(01111000), =- 120
e (11101110), =-(00010010), = -18
Example: convert the following 16-bit 2’s complement numbers to decimal
(1T11111111101111), (1111111111111000),
e (1111111111101111); =-(0000000000010001), =-17
e (1111111111111000), =-(0000000000001000), =-8
Question: express all represented 2’s complement numbers, using 4 bits

Answer: see the table below.

2’s comp | Decimal
0111 +7
0110 +6
0101 +5
o100 +4
o011 +3
o010 +2
o001 +1
o000 +0
1111 -1
1110 -2
1101 -3
1100 -4
1011 -5
1010 -6
1001 -7
1000 -8

moussa.semchedine@univ-setif.dz 22

Chapter3: Data representation

o 2’s complement addition/ subtraction
Addition / subtraction in 2’s complement is similar to 1’s complement with the following
difference:
o Ifan end carry occurs it’ll be dropped rather than added to the result

Example: Calculate the following operations using 2's complement form (4-bit)

5+2 -5-2 5-2 -5+2
5+2 -5+(-2) 5+(-2) -5+2
0101 1011 0101 1011
+ 0010 +1110 + 1110 + 0010
0111 1001 0011 1101
=47 =-7 =+3 =-3

Question: perform the following operations using 2's complement form (4-bit)

5+4 -5-7
Answer:
+é (-5)H-7)
1
+ o100 1012
____________ + 1001
_ _170 o1 0100
- =+4 incorrect result

incorrect result

Overflow problem!!!

The results are incorrect because +9 and -12 are outside the range [-8,+7]

* Advantages of 2's complement
- The most used representation for negative numbers in computers
- One representation of zero
- One additional number - 2™

Note :
In 1's complement or 2's complement, arithmetic operations are advantageous. The

subtraction of a number is reduced to the addition of its complement. This allows the machine

to use a single adder-subtractor circuit that does both addition and subtraction.

moussa.semchedine@univ-setif.dz 23

Chapter3: Data representation

Exercise 3.1

Compare the signed integers types in C++ and java

Solution:
C++ JAVA | size Range
--------- byte 8 bits [-128 , +127]
short short 16 bits [-32768 , +32767]
int int 32 bits [-2147483648 , +2147483647]
long long 64 bits [-9223372036854775808 , +9223372036854775807]

Exercise 3.2
1. The program below is written in C++
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
short A=20000,B=30000, C=A+B;
cout<<cC;

system ("PAUSE") ;
return EXIT SUCCESS;

What is the result after execution of the code? Explain the problem and find a solution.

5. Real numbers
A fractional number has two parts: integer part and decimal part these parts are separated by
a dot (.) called the decimal point. The problem in fractional number representation is how to

indicate to the machine the position of the decimal point? There are two ways to represent

real numbers:

5.1 Fixed-Point Representation
In this representation, the most significant bit represents the sign (+/-), the integer part is

represented on a fixed n bits and the fractional part on a fixed p bits.

Sign integer part Fractional part
1bit n bits p bits

moussa.semchedine@univ-setif.dz 24

Chapter3: Data representation

Example: assume a 6-bit fractional number with 3 bits for integer part and 2 bits for the
e Find the representation of the following values +5.75 -0.25 -4.125
e (alculate the range of the possible values
Answer:
e +5.75 =(010111),
-0.25 =(100001),
-4.125 impossible
. The range is [-7.75, +7.75]
[-7.75,-7.50,-7.25,.cccceiiiiiiiiiiinn +0.00...ciiii ,+7.25,+7.50, +7.75]

e Fixed-Point advantages

¢ Fixed point representation is easy to implement.

e Arithmetic operations are simple and can be performed faster (like integers) .
e Fixed-Point drawbacks

¢ In fixed point representation, range of representable numbers is limited.

e Loss of precision.

e There is no standard for fixed point representation.

5.2 Floating-Point Representation
Floating point representation is similar to scientific notation. The proper format for
normalized scientific notation of a number N is +ax 10° where 1<a <10 and b is the
power of 10. In binary N=+a x 2" where 1<a<2andbis the power of 2.
Question: express the following numbers in normalized scientific notation
637.8 -0.0475 89 -(10101), (1101.011),
(0.01101), (33.476)s (279.DE3);6

Answer :

637.8= +6.378 x10™ -0.0475=-4.75 x107 89=+8.9 x10""
-(10101), =- (1.0101),x 2™ (1101.011), =+ (1.101011),x 2"

(0.01101),=+ (1.101),x 2 (33.476)s= (3.3476)s x 8"

(279.DE3);6 = (2.79DE3);6 x 16"

In the early days of computing, each computer constructor (brand) had its own floating point
format. This had the unfortunate effect that a code that worked perfectly well on one machine

could crash on another one (portability limited).

moussa.semchedine@univ-setif.dz 25

Chapter3: Data representation

e [EEE 754 Floating Point representation standard
IEEE 754 is a technical standard for floating-point representation which was established in
1985 by the Institute of Electrical and Electronics Engineers (IEEE). IEEE 754 has 3
basic components:

1. The Sign:
2. The Biased exponent
3. The Mantissa

O IEEE 754 single precision
The number is expressed as follows:
* 1 bit for sign
* 8 bits for the biased (shifted) exponent. Biased exponent = Real exponent +127. The
exponent is shifted by 2% — 1=127. This shift is useful because the exponent can be positive
or negative.
* 23 bits for the mantissa
The following steps provide the method to convert a real number to floating point format:
1. Convert the number to Binary
. Normalize the number under the form N= (+/-)(1.m);.2*}

2
3. Calculate the Biased exponent, BE=RE+ bias= RE+127
4. Store the sign, BE and the mantissa in 32 bits

32 Bits
Signe Biased exponent Mantissa
«— | Bit—> <« 8 Bits > < 23Bits ——

Note:
Since the first bit of a normalized binary floating point number is always 1 (always exists), we

don't need to store it explicitly in the memory. This bit is called “hidden bit” .

Examples: convert the following numbers to IEEE 754 single-precision.

-3.625 +65.75 -0.125
e N=13.625
1. Convert to binary N=-(11.101),
2. Normalize N=-(1.1101),x2""

3. Calculate the Biased exponent , BE= RE+127= 1+127 =128
4. Store S, BE and M in 32 bits

moussa.semchedine@univ-setif.dz 26

Chapter3: Data representation

1 10000000 11010000000000000000000|

e N=+65.75
1. Convert to binary N =+(1000001.11);
2. Normalize N =+(1. 00000111),x2"
3. Calculate the Biased exponent , BE= RE+127=6+127 =133
4. Store S, BE and M in 32 bits

0 10000101 00000111000000000000000)

e N=-0.125
1. Convert to binary N =-(0.001),
2. Normalize N =+(1. 0), x27
3. Calculate the Biased exponent , BE= RE+127=-3+127 = 124
4. Store S, BE and M in 32 bits

11 0111100 00000000000000000000000)

O IEEE 754 single precision 2> decimal

To convert a number written in [IEEE754 single precision to decimal:
1. Calculate the Real exponent, RE= BE-127
2. Calculate value = sign x(1, mantissa), x 2", with sign = +1

3. Convert the value to decimal (polynomial form)

Examples: convert to decimal the following IEEE 754 single-precision numbers.

(€C0980000),6 (42484000)6

e N=(C0980000);6
Convert to binary N = (110000001 00110000000000000000000),
1. Calculate the Real exponent, RE= BE-127 =129-127=+2
2. N=-(1.0011),x2**
3. Convert the value to decimal N=-(1.0011), x2"==-(100.11), =-4.75

o (42484000);s =+50.0625

moussa.semchedine@univ-setif.dz 27

Chapter3: Data representation

O Special Values

*7.ero :

ISIGNE=0/1 EXPOSANT = 000.....0 MANTISSA =000.....0)

*Infinity (+infinity, -infinity): result of overflow or division by 0

ISIGNE=0/1 EXPOSANT=111.....1 MANTISSA =000.....0)
*NAN (Not A Number): undefined values such as:
(+0) / (=0) (o0)/ () (£0)x(+0) 0%(0)
00 -00 -00 +00 square root of a negative number
ISIGNE = 0/1 EXPOSANT=111.....1 MANTISSA # 000.0]

Note:
There is a compromise between the size of the mantissa (23 bits) representing the accuracy
and the size of the exponent (8 bits) representing the range.

e More digits assigned for the mantissa =» higher precision and lower range

e More digits assigned for the exponent=» higher range and lower precision
Note:

The IEEE754 standard defines three formats for representing floating point numbers:

. Single precision on 32 bits (1bit 8bits 23 bits Bias= 127)
. Double precision on 64 bits (1 bit I1bits 52 bits Bias=1023)
. Extended precision on 80 bits (1 bit 15 bits 64 bit Bias= 16383)

O IEEE 754 Addition/subtraction operations
Floating point arithmetic is more complicated than the fixed point. To calculate A+B (or A-
B) we have to follow these steps:
1- Write the two numbers in normalized form
2- Align the exponents (smaller exponent aligned to the larger)
3- Add/subtract the mantissas

4- Renormalize if necessary

Examples

Assume A and B two IEEE 754 single —precision numbers. Calculate A+B , A-B and B-A

A=010000010 10101000000000000000000
B=010000001 00100000000000000000000

moussa.semchedine@univ-setif.dz 28

Chapter3: Data representation

e A+B
A+B=+(1,10101), x2° +(1,001), x2°
= + ((1,10101), +(0,1001),)x2* =(10,00111), x2* = (1 ,000111), x2*
[A+B=0 10000011 00011100000000000000000)|

e AB
A-B=+(1,10101), x2° -(1,001), x2
= + ((1,10101), - (0,1001),)x2° = (1,00011), x2°
[A-B=0 10000010 00011000000000000000000]

e B-A
B-A=(1,001), x2*-(1,10101), x2°
= ((0,1001), - (1,10101),)x2* =- ((1,10101), - (0,1001),)x2* =- (1,00011), x2°
[B-A= 110000010 00011000000000000000000

Note :
B-A can be obtained directly by flipping the sign of the operation A-B.

6. Characters representation

The set of alphanumeric characters includes letters 'a'...... 7z, 'A....... 'Z', numerals 0.....9, and
special characters +,-,*, 7 #. The character representation is done by a correspondence table
specific to each code used.
There are a number of standards, we can cite examples:
- EBCDIC (Extended Binary Coded Decimal Interchange Code): 8-bit encoding,
mainly used by IBM.
- ASCII (American Standard Code for Information Interchange): each character on 7
bits = 128 characters
- Extended ASCII: each character on 8 bits = 256 characters
- Unicode : it is the coding of most alphabets: Arabic, Chinese, Hebrew, Cyrillic
It includes several standards: UTF-8, UTF-16, UTF-32......

Example: use the Extended ASCII table to code the following characters ‘4" ‘a’ *?’
‘A” 2 code (41)15= (01000001)
‘a’ 2 code (61);6 =(01100001)
"2 > code (3F) s =(00111111),)

moussa.semchedine@univ-setif.dz 29

Extended ASCIlI (American Standard Code for Information Interchange)

moussa.semchedine@univ-setif.dz

Left 0 1 2 3 4 5 6 7 8 | 9 | A| B | c | D E F
Right 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
0 |0000 | UL |DLE | 5P 1] & P B p o E 4 L & 5] -
1 |0001 | SOH | DC1 [1 A, Q a q i 2 i s L B B +
2 |0010 | 5TX |DC2| ™ 2 B R b r & A 5] [- E i _
3 |0011 |ETx |DC3 | # 3 C = C 5 g ii 0 | F E &)
4 | 0100 EOT|DC4 | § 4 D T d t] i fi 4 - E i T
5 | 0101 |EMG | MAK | % 5 E L e u 3 b i A, + | O &
6 |0110 ACK |S¥YM| & = F W f v] ii a A, e i y =
7 |o0111 BEL |ETB | ' 7 G | W g W c i1 * A, A,) b .
8 1000 ES |CAM| 5 H ¥ h % & i i L i =} e
9 1001 | HT | EM | g | W i ¥ & O ® 9 F 4 U
A 1010 | LF |SUEB| * J z j z & 0 - I AL r 0
B |1011 | T |ESC| + ; K [k } i @ A =] 0 1
C |1100 FF | FS . < L y | | T £ v, | 4 L - ¥ .
D 1101 | CR | G5 - = M] m { i 7 : ¢ — ! \.".f z
E |1110 | SO | RS . = M M n ~ A = i ¥ Ik i - [
F 1111 | Sl s ; ? y _ o DEL | A i » 1 5 u
Examplel : ‘A’= (41),6=(01000001),
Example2 : ‘A B C'=412042 2043
moussa.semchedine@univ-setif.dz 30

Extended ASCIl (American Standard Code for Information Interchange) moussa.semchedine@univ-setif.dz

Uppercase letters are represented by codes 41 to 5A and lowercase letters by codes 61 to 7A. By modifying the 6th bit we change from uppercase
to lowercase.

The ASCII table defines 34 control characters:

Abbrev. Full name

Abbrev. Full name DC1 Device Control 1

NUL Null DC2 Device Control 2

SOH Start of Header DC3 Device Control 3

STX Start of Text DC4 Device Control 4

ETX End of Text NAK Negative Acknowledge

EOT End of Transmission SYN Synchronous Idle

ENQ Enquiry ETB |End of Transmission Block

ACK Acknowledge CAN cancel

BEL Bell EM End of Medium

BS BackSpace SUB Substitute

HT |Horizontal Tabulation ESC Escape

LF Line Feed/New Line ES File Separator

VT Vertical Tabulation GS Group Separator

FF Form Feed/New Page RS Record Separator

CR Carriage Return us Unit Separator

SO shift out sp Space

ST shift In DEL Delete

DLE Data Link Escape

moussa.semchedine@univ-setif.dz 31

