

Chapter3: Data representation

21

 Overflow problem

 The overflow occurs because the width of registers is finite.

 The overflow occurs when two numbers of n bits each are added and the result

occupies n+1 digits.

 An overflow can be detected when the sign of the result is different from the sign of

the two numbers.

 The overflow cannot occur when the two numbers have different signs.

Note:

In unsigned integer addition, overflow occurs if there is end carry.

4.2.3 Two's complement

- Positive number is obtained by conversion to natural binary.

- The 2's complement of negative number equals its 1's complement + 1

Example: convert the following values to 8- +12 and -35

 +12= (00001100)2

 Positive value of -35 is +35 =(00100011) 2 , of -35

(11011100)2

The 2's complement of -35= (11011100)2 +1 = (11011101)2

Question: find the same values into 16-bit 2

Answer:

 +12= (0000000000001100)2

 Positive value of -35 is +35 =(0000000000100011) 2 ,

of -35 (1111111111011100)2

The 2's complement of -35= (1111111111011100)2 +1 = (1111111111011101)2

The range of numbers that can be represented by n-bit 2's complement is

 [-2
n-1

, + (2
n-1

-1)]

Note:

The easiest way to obtain the 2's complement of a negative number is by starting from LSB (

the positive value), leaving all the 0s and the first 1 unchanged and complement all the

remaining bits.

Example: convert the following values to 8- -24 and -19

 +24= (00011000) +19=(00010011)2

 -24= (11101000)2 -19= (11101101)2

Chapter3: Data representation

24

Exercise 3.1

Compare the signed integers types in C++ and java

Solution:

C++ JAVA size Range

 --------- byte 8 bits [-128 , +127]

short short 16 bits [-32768 , +32767]

int int 32 bits [-2147483648 , +2147483647]

long long 64 bits [-9223372036854775808 , +9223372036854775807]

Exercise 3.2

1. The program below is written in C++

What is the result after execution of the code? Explain the problem and find a solution.

5. Real numbers

A fractional number has two parts: integer part and decimal part these parts are separated by

a dot (.) called the decimal point. The problem in fractional number representation is how to

indicate to the machine the position of the decimal point? There are two ways to represent

real numbers:

 5.1 Fixed-Point Representation

In this representation, the most significant bit represents the sign (+/-), the integer part is

represented on a fixed n bits and the fractional part on a fixed p bits.

Sign integer part Fractional part

 1bit n bits p bits

Chapter3: Data representation

25

Example: assume a 6-bit fractional number with 3 bits for integer part and 2 bits for the

 Find the representation of the following values +5.75 -0. 25 -4.125

 Calculate the range of the possible values

 Answer:

 +5.75 = (010111)2

 -0. 25 = (100001)2

 -4.125 impossible

 The range is [-7.75, +7.75]

[-7.75, -7.50, -

 Fixed-Point advantages

 Fixed point representation is easy to implement.

 Arithmetic operations are simple and can be performed faster (like integers) .

 Fixed-Point drawbacks

 In fixed point representation, range of representable numbers is limited.

 Loss of precision.

 There is no standard for fixed point representation.

 5.2 Floating-Point Representation

Floating point representation is similar to scientific notation. The proper format for

normalized scientific notation of a number N is ±a x 10
b

where 1 a < 10 and b is the

power of 10. In binary N=±a x 2
b

 where 1 a < 2 and b is the power of 2.

Question: express the following numbers in normalized scientific notation

 637.8 -0.0475 89 - (10101)2 (1101.011)2

(0.01101)2 (33.476)8 (279.DE3)16

Answer :

637.8= +6.378 x10
+2

 -0.0475=-4.75 x10
-2

 89=+8.9 x10
+1

- (10101)2 = - (1.0101)2 x 2
+4

 (1101.011)2 = + (1.101011)2 x 2
+3

(0.01101)2 = + (1.101)2 x 2
-2

 (33.476)8= (3.3476)8 x 8
+1

(279.DE3)16 = (2.79DE3)16 x 16
+2

In the early days of computing, each computer constructor (brand) had its own oating point

format. This had the unfortunate effect that a code that worked perfectly well on one machine

could crash on another one (portability limited).

Chapter3: Data representation

26

 IEEE 754 Floating Point representation standard

IEEE 754 is a technical standard for floating-point representation which was established in

1985 by the Institute of Electrical and Electronics Engineers (IEEE). IEEE 754 has 3

basic components:

1. The Sign:

2. The Biased exponent

3. The Mantissa

 IEEE 754 single precision

The number is expressed as follows:

bit for sign

biased (shifted) exponent. Biased exponent = Real exponent +127. The

exponent is shifted by 2
8-1

 1=127. This shift is useful because the exponent can be positive

or negative.

The following steps provide the method to convert a real number to floating point format:

1. Convert the number to Binary

2. Normalize the number under the form N= (+/-)(1.m)2.2
ER

3. Calculate the Biased exponent, BE=RE+ bias= RE+127

4. Store the sign, BE and the mantissa in 32 bits

Note:

Since the first bit of a normalized binary floating point number is always 1 (always exists), we

don't need to store it explicitly in the memory. This bit is called .

Examples: convert the following numbers to IEEE 754 single-precision.

 -3.625 +65.75 -0.125

 N=-3.625

1. Convert to binary N = -(11.101)2

2. Normalize N = -(1.1101)2 x2
+1

3. Calculate the Biased exponent , BE= RE+127= 1+127 = 128

4. Store S, BE and M in 32 bits

Signe Biased exponent Mantissa

Chapter3: Data representation

27

 1 10000000 11010000000000000000000

 N=+65.75

1. Convert to binary N = +(1000001.11)2

2. Normalize N = +(1. 00000111)2 x2
+6

3. Calculate the Biased exponent , BE= RE+127= 6+127 = 133

4. Store S, BE and M in 32 bits

 0 10000101 00000111000000000000000

 N= -0.125

1. Convert to binary N = -(0.001)2

2. Normalize N = +(1. 0)2 x2
-3

3. Calculate the Biased exponent , BE= RE+127= -3+127 = 124

4. Store S, BE and M in 32 bits

 1 0111100 00000000000000000000000

 IEEE 754 single precision decimal

To convert a number written in IEEE754 single precision to decimal:

1. Calculate the Real exponent, RE= BE-127

2. Calculate value = sign ×(1, mantissa)2 × 2
ER

, with sign = ±1

3. Convert the value to decimal (polynomial form)

Examples: convert to decimal the following IEEE 754 single-precision numbers.

(C0980000)16 (42484000)16

 N=(C0980000)16

Convert to binary N = (1 10000001 00110000000000000000000)2

1. Calculate the Real exponent, RE= BE-127 =129-127=+2

2. N=-(1.0011)2 x2
+2

3. Convert the value to decimal N=-(1.0011)2 x2
+2

==-(100.11)2 =-4.75

 (42484000)16 = +50.0625

Chapter3: Data representation

28

 Special Values

*Zero :

SIGNE = 0/1 EXPOSANT = 0 MANTISSA

*Infinity (+infinity, -infinity): result of overflow or division by 0

SIGNE = 0/1 EXPOSANT = MANTISSA

 *NAN (Not A Number): undefined values such as:

(±0) / (±0)

- - square root of a negative number

 SIGNE = 0/1 EXPOSANT = MANTISSA

Note:

 There is a compromise between the size of the mantissa (23 bits) representing the accuracy

and the size of the exponent (8 bits) representing the range.

 More digits assigned for the mantissa higher precision and lower range

 More digits assigned for the exponent higher range and lower precision

Note:

The IEEE754 standard defines three formats for representing floating point numbers:

. Single precision on 32 bits (1bit 8bits 23 bits Bias= 127)

. Double precision on 64 bits (1 bit 11bits 52 bits Bias= 1023)

. Extended precision on 80 bits (1 bit 15 bits 64 bit Bias= 16383)

 IEEE 754 Addition/subtraction operations

Floating point arithmetic is more complicated than the fixed point. To calculate A+B (or A-

B) we have to follow these steps:

1- Write the two numbers in normalized form

2- Align the exponents (smaller exponent aligned to the larger)

3- Add/subtract the mantissas

4- Renormalize if necessary

Examples

Assume A and B two IEEE 754 single precision numbers. Calculate A+B , A-B and B-A

A= 0 10000010 10101000000000000000000

B= 0 10000001 00100000000000000000000

Chapter3: Data representation

29

 A+B

A+B= +(1,10101)2 x2
3
 + (1,001)2 x2

2

= + ((1,10101)2 +(0,1001)2)x2
3

= (10,00111)2 x2
3

 = (1 ,000111)2 x2
4

 A+B= 0 10000011 00011100000000000000000

 A-B

A-B= +(1,10101)2 x2
3
 - (1,001)2 x2

2

= + ((1,10101)2 - (0,1001)2)x2
3

= (1,00011)2 x2
3

 A-B= 0 10000010 00011000000000000000000

 B-A

B-A= (1,001)2 x2
2
 - (1,10101)2 x2

3

= ((0,1001)2 - (1,10101)2)x2
3

= - ((1,10101)2 - (0,1001)2)x2
3

= - (1,00011)2 x2
3

 B-A= 1 10000010 00011000000000000000000

Note :

B-A can be obtained directly by flipping the sign of the operation A-B.

6. Characters representation

numerals

special characters +,-,*, ? #. The character representation is done by a correspondence table

specific to each code used.

There are a number of standards, we can cite examples:

 EBCDIC (Extended Binary Coded Decimal Interchange Code) : 8-bit encoding,

mainly used by IBM.

 ASCII (American Standard Code for Information Interchange): each character on 7

bits 128 characters

 Extended ASCII: each character on 8 bits 256 characters

 Unicode :

It includes several standards: UTF-8, UTF-16, UTF-

Example: use the Extended ASCII table to code the following characters

 code (41)16= (01000001)2

 code (61)16 =(01100001)

 code (3F) 16 =(00111111)2)

31

Uppercase letters are represented by codes 41 to 5A and lowercase letters by codes 61 to 7A. By modifying the 6th bit we change from uppercase

to lowercase.

The ASCII table defines 34 control characters:

