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1. Definition 

     Boolean algebra derives its name from the English mathematician George Boole 1815 - 1864, who 

published two major books, The Mathematical Analysis of Logic  (1847) and The Laws of 

Thought (1854) the Mathematical theories of logic and probabilities.  

       Boolean algebra was first used by Claude E.  Shannon (research  assistant at  the  Massachusetts  

Institute  of  Technology) for the design of relay  switching  circuits  in  1938. Instead of elementary 

algebra where the values of the variables are numbers, Boolean algebra deals only with binary number 

system 0 or 1 (false or true). Boolean algebra is very useful in designing logic circuits used in 

computers.  

2. Fondamental concepts  

       2.1 Definition  

  Boolean algebra is defined with a set of elements (Boolean variables), a set of operators (+ or   .  and   

not ¯¯ ), and a number of postulates.  

      2.2 Boolean variable  

  A Boolean variable has two values, either 0 or 1.  

      2.3 Boolean function  

  A Boolean function is an expression formed with combination of Boolean variables Connected by 

Boolean Operators (+ or   .  and   not ¯¯ ). The value of a function may be 0 or 1, depending on its 

variables' values.  

Example: let A, B, C  three  Boolean variables, the following expressions are Boolean functions.   

          ( , ) .F A B A B                         ( , )F A B A B              

     2.4 Principle of duality   

To form the dual of an Boolean expression we need to: 

 Changing each OR (+) to an AND (.)  

 Changing each AND (.) to an OR (+)  

 Replacing each 0 by 1 and each 1 by 0 

Example:        the dual of  1+1=1      is        0.0=0          

Note : Each postulate, each theorem and each expression of Boolean algebra has a dual equivalent, 

where the 0s are replaced by 1s, the 1s by 0s, the ( .) by ( + ) and ( +) by ( . ). 

        2.5 Postulates 

Postulates are assumed to be true without any proof or demonstration. 

                               Postulate                    Dual Postulate  

P1                  0+0=0                       1.1=1 

( , , ) . . . . . .F A B C ABC ABC ABC
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P2                  1+1=1                       0.0=0 

P3                  1+0=0+1=1       0.1=1.0=0 

P4                  0 1                      1 0  

                        2.6 Boolean Theorems 

Assum A, B and C three Boolean variables:   

Associative law          A+B)+C= A+(B+C)=A+B+C                (A.B).C=A.(B.C)=A.B.C 

Commutative law      A+B=B+A                                              A.B=B.A                 

Distributive law         A.(B+C)= A.B + A.C                                         A+(B.C)=(A+B).(A+C) 

Identity element           A+0=A                                                          A.1=A 

Complement Law       1A A                                                           . 0A A   

 Involution                  A A          

 Idempotence law       

De Morgan's laws                   

Absorption law              A+A.B=A                                                        A.(A+B)=A              

Note :  

De Morgan's laws can be extended for n variables as: 
 
 
 
Note:  

If a Boolean theorem/equality is proved, its dual automatically holds and need not to be proved 

separately.  

                        2.7 Truth table  

The truth table of a Boolean function is a table that gives the results (or outputs) of all possible input 

variables. For an n number of variables, 2n combinations of inputs are arranged in columns on the left 

and the output result is listed in the rightmost column. 

Example: construct the truth table of the Boolean function F 

( , , ) . . .F A B C AB ABC  

 

A B C B  .AB  A.B.C F(A,B,C) 

0 0 0 1 0 0 0 
0 0 1 1 0 0 0 
0 1 0 0 0 0 0 
0 1 1 0 0 0 0 
1 0 0 1 1 0 1 
1 0 1 1 1 0 1 
1 1 0 0 0 0 0 
1 1 1 0 0 1 1 

.A B A B.A B A B

........... . . ......A B C A B C. . ...... ..........A B C A B C
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  Note:          

A truth table can be used to prove Boolean algebra theorems and to determine if two Boolean 

functions are equivalent or not.  

Example: verify the following equality using the truth table 
                                                                       A+A.B=A     
                                                          

A B A.B A+A.B 
0 0 0 0 

0 1 0 0 

1 0 0 1 

1 1 1 1 

                        2.8 Logic gates 

Logic gates are a basic building blocks of the electronic circuits, that have one (or more) input and 
only one output. The graphic symbol of each logic gate will be presented later in this chapter. 

                        2.9 Boolean operators  

There are three basic operators AND, Or, NOT and other derived operators 
that are combinations of the basic operations. For each operator we will present the truth table and the 
corresponding logic gate.   
 

 NOT (inverter)  
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 AND 

 

 

 

 

 

 

 NAND 
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                             2.10 Operators precedence 

From highest to lowest precedence:   NOT   AND   OR. If there are several logical operators of the 

same precedence, they will be examined left to right. Note that we must evaluate bracketed expressions 

first, if they exist. 

  

3. Representation of Boolean Function 

There are many equivalent representations of a Boolean function like: truth table, algebraic form          

( canonical form)  numerical form, logic diagram , Karnaugh map, Venn diagram       

 

                             3.1 Truth table  

See the section 2.7  

    3.2 Algebraic form 

The Boolean function is expressed in terms from complemented or uncomplemented variables 

connected with basic Boolean operators (+ or   .  and   not ¯¯ ). 

Example: ( , )f A B AB AB AB  

 Minterm :  

A minterm (called also standard product) is a product of all n variables of the function either 

complemented or uncomplemented.  

Example: . . .ABC D     . . .     . . .ABC D ABC D 3 minterms for a function of 4 variables

 Maxterm :  

A maxterm (called also standard sum) is a sum of all n variables of the function either complemented 

or uncomplemented.  

Example: A B C D                                      A B C D A B C D 3 maxterms for a 

function of 4 variables

 3.2.1 Disjunctive canonical form (DCF)    

Called also sum of minterms. The Boolean function is expressed as the logical sum of all the  

minterms for which the value of the function is 1 in the truth table.  

3.2.2 Conjunctive canonical form (CCF)   

Called also product of maxterms. The Boolean function is expressed as the logical product of all the  

maxterms for which the value of the function is 0 in the truth table.  

 

Note: Disjunctive canonical form (DCF) and Conjunctive canonical form (CCF) are equivalent.
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Note: 

If there is a minterm/ maxterm n variables, the form is called SOP (sum of 

products)/ POS (product of sums). 

To convert SOP/POS to DCF/CCF respectively we use the following rules:
 

           1. Examine the missing variables in each product/ sum which is not a minterm/maxterm. 

           2. Multiply that product with 1 (e.g :              )    

           3. Add 0 (e.g :              ) to that sum 

           4. Use the distributive laws 

           5. Remove the redundant terms if necessary  

Example: find the DCF and CCF respectively for the following functions 
 
  
 

Answer  

 

3.3 Numerical form 

This form is used as a short notation, where each minterm/maxterm is replaced by the decimal 

equivalent.  

Example:  the numerical forms of the function F (section 5.2.2) are: 

F(A,B,C,D)=  (3,5,6,7)       

F(A,B,C,D)=  (0,1,2,4) 

 

    3.4 Logic diagram  

The logic diagram is a graphical representation of a Boolean function, it consists in replacing each 
logic operator by the corresponding logic gate. 
 
Example: Draw the logic diagram of the following function. 
 

 

    

 

      

 

 
 

( , , ) .

( , , )

F A B C AB

G A B C A B

( , , ) . .F A B C A B B C

X X

.X X

( , , ) . . .1 . .(C C) A. .C A. .C

( , , ) ( ) ( 0) ( .C) (A B C).(A B C)

F A B C AB AB AB B B

G A B C A B A B A B C
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4. Universal gates  

  NAND gates and NOR gates are called universal gates, because any Boolean function can be 

implemented by using only one of these two. Universal gates allow reducing the circuit design 

complexity by reducing the number of different gate types required, and also reducing the number of 

transistors needed (minimize manufacturing costs).  

 Basic logic operators ( Not  AND  OR) are implemented using only NOR gates  

 

 
 

 

 

 Basic logic operators ( Not  AND  OR) are implemented using only NAND gates  

 

 
 
 
 
 

Example:  

A

B

C

F
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1. Express the following expression with only NAND operator  
 
 
 
 
2. Express the following expression with only NOR operator      (A )( )B C A D  

  
 
Note: 

Generally, we prefer SOP (Sum Of Products) form to design the digital circuits using only NAND 

gates and POS (Product Of Sums) form to design the digital circuit using only NOR gates.  

5. Minimization of Boolean functions 

 The objective of simplifying logic functions is to reduce the number of terms (reduce the number of 

gates) to obtain  smaller, faster and cheaper circuit.  

5.1 Algebraic minimization  

It consists in applying the theorems/laws of Boolean algebra (see sections 2.5 and 2.6) in order to 

reduce the number of variables or terms.  

Useful simplifications  

 

Example:   minimize the following Boolean function using algebraic manipulation 

1.  

 

 

 

 

2. 

 

 
 
 
 
 
 
 
 

. . . . . . . . . . .AB C D AB C D ABC D ABC DD

. .AB C D

(A )( ) (A )( ) (A ) ( )B C A D B C A D B C A D

( , , )  .   .   .  

                . .( )            using rule1

                .                         using rule4  

                  

F A B C AB BC BC

AB B C C

AB B

A B

1:       1                                    . 0

2 :      .   .                           (   ) (  )               

3:                                       ( )  

Rule A A A A

Rule A B A B A A B A B A

Rule A A B A A A B A

R 4 :                                (   )   ule A A B A B A A B AB

( , , )      

  ( )        using rule1

   

  (    ( ))            using rule4

  (  )

                                    

F A B C ABC ABC ABCD

AB C C ABCD

AB ABCD

A B B CD

A B CD



41

3. Add an existing term  
 

 

 

 

 

 
 
4. Simplify the complement of a function 
 

, ,F A B C  (2,3,4,5,6,7)  

(0,1)

. . . .

. .( )        using rule1

.

( , , ) .      using De Morgan's 

,

la

,

w

ABC ABC

AB C C

AB

F A B C

F A B

AB A B

C

    

       

                 5.2 Karnaugh Map 

The algebraic simplification method becomes very difficult and cumbersome if the number of 

variables or terms increase.  Karnaugh's method is a faster and can be used to solve Boolean functions 

of up to 6 variables.  

 Adjacency principle  

Two Boolean terms are adjacent when they contain the same variables and differ in the form of exactly 

one variable.    

Example:  
 
 

 

 

 

 Karnaugh  principle  

 A Karnaugh map is a graphical form of a truth table consists of adjacent cells. 

 The number of cells equal to 2N, where N is the number of variables. 

 Rows and columns are labeled  using Gray code. 

 Karnaugh  maps  for  2,  3, 4 and 5 variables are shown below. 

The following terms are adjacent

A.B  A.B   B 

A.B.C  A.B.C    A.C 

A.B.C.D  A.B.C.D   A.B.D 

The following terms are not adjacent

The following terms are not adjacent

A.B  A.B 

A.B.C  A.B.C 

A.B.C.D  A.B.C.D 

 ( , , )  . .   . .   . .  . .   

 . .   . .   . .    . .   . .    . .   

  . .( )    . ..( )     . .( )   using rule1

 . . .

F A B C ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC

BC A A AC B B AB C C

BC AC AB
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Note: grouping may not be unique, i.e.  We can make grouping in more than one way. 
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Note:  

 
 
 
 

 states 

A function is said to be incompletely specified when its value is indifferent (we  what value 

may take on) or does not exist (never occurring) for certain combinations of input variables. We use 

the symbol X or  for  states. 

In the Karnaugh table, the symbol X can take either a 1 or 0 indifferently, so we replace by 1 only 

those which helps in making a large group.  

Example:  

 

 

 
 
 
 
 
 
 
 

   B C D
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