Exercise Sheet 2

Directive: the use of the calculator is not permitted, except for complicated operations.

Exercise 1

Perform the following conversions (for complicated calculations, leave the result as fraction)

- decimal-----binary
$9 \quad 64$
13.75
29.625
8.6
- binary ----- decimal
$(10)_{2} \quad(1011)_{2} \quad(101101)_{2} \quad(0001110)_{2} \quad(110001.11)_{2} \quad(1101.101)_{2}$
- decimal -----octal
$18 \quad 7$
65.25
30.125
- octal----- decimal
(14) 8
(52) 8
$(101)_{8}$
29
(AA) ${ }_{16}$
$(7.05)_{8}$
160.25
$(200.13)_{8}$
- decimal -----hexa $9 \quad 12$
(2E) ${ }_{16}$
(1F.E) ${ }_{16}$
(A0.8) ${ }_{16}$
$(143.6)_{8}=($ \qquad ..) ${ }_{2}$
$(110100)_{2}=(\ldots \ldots \ldots . .)_{8}$
- $(23)_{8}=($ \qquad ..)

Exercise 2

Convert directly the following numbers as requested $1001.1110110101)^{2}$
\qquad ..) 8

- (1 F) $16=($ \qquad .)2
(A2.AF) $16=($ \qquad .) $2 \quad(101001110) 2=($ \qquad .)16 $(111.11101001110111)_{2}=$ \qquad
- $(705)_{8}=(\ldots \ldots \ldots . . .)_{16}$
$(4 \mathrm{D})_{16}=(\ldots \ldots \ldots . .)_{8}$
$(65.13)_{8}=$
$(\ldots)_{16}$
$(2 \mathrm{D} . \mathrm{FFC})_{16}=(\ldots \ldots \ldots . .)_{8}$

Exercise 3

1. Convert the following binary numbers into decimal and deduce the general rules.

2. Use the previous rules to calculate the decimal values of the following numbers
(111011)2
$(111111000000)_{2}$

$$
(11110110111)_{2}
$$

$(1111110110110)_{2}$
$(111111000000111111)_{2}$

Exercise 4 (exam 2021)

Determine the pairs of integers (x, y) such that: $\quad(x y)_{7}=(y x)_{10}$

Exercise 5 (exam 2023)

The sum of the digits of a 2 -digit number is equal to 11 . If we add 45 to this number we obtain a number formed by exchanging digits. What is this number?

Exercise 6

Perform the following operations in binary

- $(1101010)_{2}+(1110011)_{2}$
- $(1010)_{2}+(111)_{2}$
- $(1010.011)_{2}+(111.11)_{2}$
- $(111011)_{2}-(11)_{2}$
- $(100001)_{2}-(11110)_{2}$
- $(1001.1110)_{2}-(11.1001)_{2}$

Extra exercises

Exercise \#1

Perform the requested conversions
$(213)_{8}=($ \qquad $(110)_{7}=(\ldots \ldots \ldots . .)_{4}$
$(65)_{7}=(\ldots \ldots \ldots . . .)_{9}$
$(\mathrm{AD})_{16}=(\ldots \ldots \ldots . .)_{6}$
$(158)_{9}=(\ldots \ldots \ldots . .)_{16}$
$(101011)_{2}=(\ldots \ldots \ldots . .)_{3}$

Exercise \#2

1- Write the following decimal as a sum of powers of $10 . \quad \mathrm{N}=1928.765$
2- What is the quick way to convert a large decimal number to binary?
3- Find the base " X " in the equation: $(4 \mathrm{~F})_{16}=(142)_{\mathrm{X}}$
4- How to calculate the double/half of a number (integer/fractional) written in binary?
5- Which numbers have the same representation in all numbering systems?
6- Among the following numbers, find the number which has a meaning in Hexadecimal:
CACFH, BAC, ROUE, ABCD, AFAK, DE1549C2?
7- How to check the parity (even/odd) of a number written in binary?
8- How many bits are required to write 614 in binary?
9- What is the advantage of using the octal/hexadecimal system?
10 - What are the pros and cons of calculator?

Exercise \#3

Suppose a number system of base \boldsymbol{b}.
1- Complete the following conversions

$$
b=(\ldots \ldots)_{b} \quad b^{2}=(\ldots \ldots)_{b} \quad b^{n}=(\ldots \ldots)_{b} \quad(\mathrm{n}: \text { integer } \geq 1)
$$

2- Let X a decimal number $\quad X=4 b^{5}+2 b^{3}+b+7$
How to write X in the base \mathbf{b} ?

