Data representation

Directive: the use of the calculator is not permitted, except for complicated operations. **Exercise 1**

- 1. Convert the following numbers to Gray code : 29 96 28
- 2. Find the decimal value for each Gray code : $(11000)_{\rm gc}$ (10001)_{gc} (1110111)_{gc}

Exercise 2

1. Convert the following numbers (8-bits) to sign-magnitude representation, 1's and 2' complement.

-79 -43 +35-128

2. Complete the following table by the decimal equivalent

		Decimal
Unsigned integer	(00011010) ₂	
	(10001101) ₂	
Signed-Magnitude	(00101100) ₂	
	(10001110) ₂	
1's complement	(00010111) ₂	
	(11001011) ₂	
2's complement	(00011001) ₂	
	(10101110) ₂	

Exercise 3

In JAVA, signed integers are represented in 2's complement with different types.

> **byte**: (1 byte) short: (2 bytes)

int: (4 bytes) long: (8 bytes)

1. For each type, find the range of the possible values.

2. The following program is written in JAVA

- Perform the addition operation (c=a+b) in each case and mention the overflow problem.

- Propose a solution to the problem.

3. Is the following instruction correct? short a=45000; public static void main(String []args) { byte a,b,c; a=18; b=25; c=a+b; // 1st case a=96; b=50; c=a+b; // 2nd case a=77; b=-50; c=a+b; // 3rd case a=-50; b=-80; c=a+b; // 4th case

Exercise 4

1. Express the following numbers in IEEE 754 single-precision. (abbreviate the results in Hexa)

+ 19 - 0.625 - 33.0625 $-\frac{17.25}{64}$ $\frac{0}{0}$

2. Write the decimal equivalent for the following IEEE 754 floating point numbers

Single-Precision:	$(42960000)_{16}$	(C1640000) ₁₆	(BFA00000) 16	(7FD40000) ₁₆
Double-Precision:	(C0442000	00000000) 16	$(404980000000000)_{16}$	

Extra exercises

Exercise #1

Assume that a computer represents real numbers in 16-bit floating point

	Sign	Biased Exponent	Mantissa	
	1 bit	5 bits	10 bits	
	1. V 2. R 3. A	What is the value of the bias (s epresent the following values bbreviate the results in Hexad	hift)? :: -9.25 +100.75 decimal.	
Exe	rcise #2			
Con	sider the	following C++ code	Γ	{
• sh	ort: integ	<pre>short A,B ;</pre>		
• flo	at: real t	<pre>float X,Y;</pre>		
• do	uble: rea	double Z;		
Q	uestions	A=-99 ;		
	1. E	B= 128 ;		
and abbreviate the results in hexadecimal.				X=A-0.25 ;
2. Find the decimal values of the following numbers.				Y=A*B ;
	sh	ort (0015) ₁₆	(8044) ₁₆	Z=X ;
	flo	oat (C0E80000) ₁₆	(7FE00000) ₁₆	1
	do	ouble (C0442000000	(7FF00000000000000000000000000000000000	