Directive: the use of the calculator is not permitted, except for complicated operations.

Exercise 1

1. Convert the following numbers to Gray code : $2829 \quad 96$
2. Find the decimal value for each Gray code : (11000) $)_{\mathrm{gc}} \quad(10001)_{\mathrm{gc}} \quad(1110111)_{\mathrm{gc}}$

Exercise 2

1. Convert the following numbers (8-bits) to sign-magnitude representation, 1 's and 2 ' complement.

$$
\begin{array}{llll}
+35 & -43 & -79 & -128
\end{array}
$$

2. Complete the following table by the decimal equivalent

		Decimal
Unsigned integer	$(00011010)_{2}$	
	$(10001101)_{2}$	
Signed-Magnitude	$(00101100)_{2}$	
	$(10001110)_{2}$	
1's complement	$(00010111)_{2}$	
	$(11001011)_{2}$	
2 's complement	$(00011001)_{2}$	
	$(10101110)_{2}$	

Exercise 3

In JAVA, signed integers are represented in 2's complement with different types.

byte: (1 byte) \quad short: (2 bytes)	
int: (4 bytes)	long: (8 bytes)

1. For each type, find the range of the possible values.
2. The following program is written in JAVA

- Perform the addition operation ($c=a+b$) in each case and mention the overflow problem.
- Propose a solution to the problem.

3. Is the following instruction correct? short $a=45000$;
4. Is the following instruction correct? short $a=45000$;
```
public static void main(String []args)
{
    byte a,b,c;
    a=18;
    b=25;
    c=a+b; // 1st case
    a=96;
    b=50;
    c=a+b; // 2nd case
    a=77;
    b=-50;
    c=a+b; // 3rd case
    a=-50;
    b=-80;
    c=a+b; // 4th case
}
```


Exercise 4

1. Express the following numbers in IEEE 754 single-precision. (abbreviate the results in Hexa)

$$
\begin{array}{lllll}
+19 & -0.625 & -33.0625 & -\frac{17.25}{64} & \frac{0}{0}
\end{array}
$$

2. Write the decimal equivalent for the following IEEE 754 floating point numbers

Single-Precision: $(42960000)_{16} \quad\left({ }^{(C 1640000}\right)_{16} \quad(\text { BFA00000 })_{16} \quad(7 F D 40000)_{16}$
Double-Precision: $\quad(\mathrm{C} 044200000000000)_{16} \quad(4049800000000000)_{16}$

Extra exercises

Exercise \#1

Assume that a computer represents real numbers in 16-bit floating point

Sign	Biased Exponent	Mantissa
$\mathbf{1}$ bit	$\mathbf{5}$ bits	$\mathbf{1 0}$ bits

1. What is the value of the bias (shift)?
2. Represent the following values: $-9.25 \quad+100.75$
3. Abbreviate the results in Hexadecimal.

Exercise \#2

Consider the following $\mathrm{C}++$ code

- short: integer type in 16-bit 2's complement
- float: real type in IEEE 754 single precision
- double: real type in IEEE 754 double precision

Questions

1. Express the internal representations of all variables $\mathrm{A}, \mathrm{B}, \mathrm{X}, \mathrm{Y}$ and Z , and abbreviate the results in hexadecimal.
2. Find the decimal values of the following numbers.
short
float
(0015) ${ }_{16}$
$(8044)_{16}$
double
(C0E80000) ${ }_{16}$
(7FE00000) ${ }_{16}$
\{
short A, B ;
float X, Y;
double $Z ;$
$\mathrm{A}=-99$;
$\mathrm{B}=128$;
$\mathrm{X}=\mathrm{A}-0.25$;
$\mathrm{Y}=\mathrm{A} * \mathrm{~B}$;
$\mathrm{Z}=\mathrm{X}$;
\}
help : $2^{15}=32768$
