
32

1. Definition

 Boolean algebra derives its name from the English mathematician George Boole 1815 - 1864, who

published two major books, The Mathematical Analysis of Logic (1847) and The Laws of

Thought (1854) the Mathematical theories of logic and probabilities.

 Boolean algebra was first used by Claude E. Shannon (research assistant at the Massachusetts

Institute of Technology) for the design of relay switching circuits in 1938. Instead of elementary

algebra where the values of the variables are numbers, Boolean algebra deals only with binary number

system 0 or 1 (false or true). Boolean algebra is very useful in designing logic circuits used in

computers.

2. Fondamental concepts

 2.1 Definition

 Boolean algebra is defined with a set of elements (Boolean variables), a set of operators (+ or . and

not ¯¯), and a number of postulates.

 2.2 Boolean variable

 A Boolean variable has two values, either 0 or 1.

 2.3 Boolean function

 A Boolean function is an expression formed with combination of Boolean variables Connected by

Boolean Operators (+ or . and not ¯¯). The value of a function may be 0 or 1, depending on its

variables' values.

Example: let A, B, C three Boolean variables, the following expressions are Boolean functions.

 (,) .F A B A B (,)F A B A B

 2.4 Principle of duality

To form the dual of an Boolean expression we need to:

 Changing each OR (+) to an AND (.)

 Changing each AND (.) to an OR (+)

 Replacing each 0 by 1 and each 1 by 0

Example: the dual of 1+1=1 is 0.0=0

Note : Each postulate, each theorem and each expression of Boolean algebra has a dual equivalent,

where the 0s are replaced by 1s, the 1s by 0s, the (.) by (+) and (+) by (.).

 2.5 Postulates

Postulates are assumed to be true without any proof or demonstration.

 Postulate Dual Postulate

P1 0+0=0 1.1=1

(, ,)F A B C ABC ABC ABC

33

P2 1+1=1 0.0=0

P3 1+0=0+1=1 0.1=1.0=0

P4 0 1 1 0

 2.6 Boolean Theorems

Assum A, B and C three Boolean variables:

Associative law A+B)+C= A+(B+C)=A+B+C (A.B).C=A.(B.C)=A.B.C

Commutative law A+B=B+A A.B=B.A

Distributive law A.(B+C)= A.B + A.C A+(B.C)=(A+B).(A+C)

Identity element A+0=A A.1=A

Complement Law 1A A . 0A A

 Involution A A

 Idempotence law

De Morgan's laws

Absorption law A+A.B=A A.(A+B)=A

Note :

De Morgan's laws can be extended for n variables as:

Note:

If a Boolean theorem/equality is proved, its dual automatically holds and need not to be proved

separately.

 2.7 Truth table

The truth table of a Boolean function is a table that gives the results (or outputs) of all possible input

variables. For an n number of variables, 2n combinations of inputs are arranged in columns on the left

and the output result is listed in the rightmost column.

Example: construct the truth table of the Boolean function F

(, ,) . . .F A B C AB ABC

A B C B .AB A.B.C F(A,B,C)

0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 1 1 0 1
1 0 1 1 1 0 1
1 1 0 0 0 0 0
1 1 1 0 0 1 1

.A B A B.A B A B

...........A B C A B C.A B C A B C

34

 Note:

A truth table can be used to prove Boolean algebra theorems and to determine if two Boolean

functions are equivalent or not.

Example: verify the following equality using the truth table
 A+A.B=A

A B A.B A+A.B
0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

 2.8 Logic gates

Logic gates are a basic building blocks of the electronic circuits, that have one (or more) input and
only one output. The graphic symbol of each logic gate will be presented later in this chapter.

 2.9 Boolean operators

There are three basic operators AND, Or, NOT and other derived operators
that are combinations of the basic operations. For each operator we will present the truth table and the
corresponding logic gate.

 NOT (inverter)

 OR

 AND

 NAND

36

 2.10 Operators precedence

From highest to lowest precedence: NOT AND OR. If there are several logical operators of the

same precedence, they will be examined left to right. Note that we must evaluate bracketed expressions

first, if they exist.

3. Representation of Boolean Function

There are many equivalent representations of a Boolean function like: truth table, algebraic form

(canonical form) numerical form, logic diagram , Karnaugh map, Venn diagram

 3.1 Truth table

See the section 2.7

 3.2 Algebraic form

The Boolean function is expressed in terms from complemented or uncomplemented variables

connected with basic Boolean operators (+ or . and not ¯¯).

Example: (,)f A B AB AB AB

 Minterm :

A minterm (called also standard product) is a product of all n variables of the function either

complemented or uncomplemented.

Example: . . .ABC D ABC D ABC D 3 minterms for a function of 4 variables

 Maxterm :

A maxterm (called also standard sum) is a sum of all n variables of the function either complemented

or uncomplemented.

Example: A B C D A B C D A B C D 3 maxterms for a

function of 4 variables

 3.2.1 Disjunctive canonical form (DCF)

Called also sum of minterms. The Boolean function is expressed as the logical sum of all the

minterms for which the value of the function is 1 in the truth table.

3.2.2 Conjunctive canonical form (CCF)

Called also product of maxterms. The Boolean function is expressed as the logical product of all the

maxterms for which the value of the function is 0 in the truth table.

Note: Disjunctive canonical form (DCF) and Conjunctive canonical form (CCF) are equivalent.

38

Note:

If there is a minterm/ maxterm n variables, the form is called SOP (sum of

products)/ POS (product of sums).

To convert SOP/POS to DCF/CCF respectively we use the following rules:

 1. Examine the missing variables in each product/ sum which is not a minterm/maxterm.

 2. Multiply that product with 1 (e.g :)

 3. Add 0 (e.g :) to that sum

 4. Use the distributive laws

 5. Remove the redundant terms if necessary

Example: find the DCF and CCF respectively for the following functions

Answer

3.3 Numerical form

This form is used as a short notation, where each minterm/maxterm is replaced by the decimal

equivalent.

Example: the numerical forms of the function F (section 5.2.2) are:

F(A,B,C,D)= (3,5,6,7)

F(A,B,C,D)= (0,1,2,4)

 3.4 Logic diagram

The logic diagram is a graphical representation of a Boolean function, it consists in replacing each
logic operator by the corresponding logic gate.

Example: Draw the logic diagram of the following function.

(, ,) .

(, ,)

F A B C AB

G A B C A B

(, ,) . .F A B C A B B C

X X

.X X

(, ,) . . .1 . .(C C) A. .C A. .C

(, ,) () (0) (.C) (A B C).(A B C)

F A B C AB AB AB B B

G A B C A B A B A B C

39

4. Universal gates

 NAND gates and NOR gates are called universal gates, because any Boolean function can be

implemented by using only one of these two. Universal gates allow reducing the circuit design

complexity by reducing the number of different gate types required, and also reducing the number of

transistors needed (minimize manufacturing costs).

 Basic logic operators (Not AND OR) are implemented using only NOR gates

 Basic logic operators (Not AND OR) are implemented using only NAND gates

Example:

A

B

C

F

40

1. Express the following expression with only NAND operator

2. Express the following expression with only NOR operator (A)()B C A D

Note:

Generally, we prefer SOP (Sum Of Products) form to design the digital circuits using only NAND

gates and POS (Product Of Sums) form to design the digital circuit using only NOR gates.

5. Minimization of Boolean functions

 The objective of simplifying logic functions is to reduce the number of terms (reduce the number of

gates) to obtain smaller, faster and cheaper circuit.

5.1 Algebraic minimization

It consists in applying the theorems/laws of Boolean algebra (see sections 2.5 and 2.6) in order to

reduce the number of variables or terms.

Useful simplifications

Example: minimize the following Boolean function using algebraic manipulation

1.

2.

.AB C D AB C D ABC D ABC DD

. .AB C D

(A)() (A)() (A) ()B C A D B C A D B C A D

(, ,) . . .

 . .() using rule1

 . using rule4

F A B C AB BC BC

AB B C C

AB B

A B

1: 1 . 0

2 : . . () ()

3: ()

Rule A A A A

Rule A B A B A A B A B A

Rule A A B A A A B A

R 4 : () ule A A B A B A A B AB

(, ,)

 () using rule1

 (()) using rule4

 ()

F A B C ABC ABC ABCD

AB C C ABCD

AB ABCD

A B B CD

A B CD

41

3. Add an existing term

4. Simplify the complement of a function

, ,F A B C (2,3,4,5,6,7)

(0,1)

. . . .

. .() using rule1

.

(, ,) . using De Morgan's

,

la

,

w

ABC ABC

AB C C

AB

F A B C

F A B

AB A B

C

 5.2 Karnaugh Map

The algebraic simplification method becomes very difficult and cumbersome if the number of

variables or terms increase. Karnaugh's method is a faster and can be used to solve Boolean functions

of up to 6 variables.

 Adjacency principle

Two Boolean terms are adjacent when they contain the same variables and differ in the form of exactly

one variable.

Example:

 Karnaugh principle

 A Karnaugh map is a graphical form of a truth table consists of adjacent cells.

 The number of cells equal to 2N, where N is the number of variables.

 Rows and columns are labeled using Gray code.

 Karnaugh maps for 2, 3, 4 and 5 variables are shown below.

The following terms are adjacent

A.B A.B B

A.B.C A.B.C A.C

A.B.C.D A.B.C.D A.B.D

The following terms are not adjacent

The following terms are not adjacent

A.B A.B

A.B.C A.B.C

A.B.C.D A.B.C.D

 (, ,)

 . .() . ..() . .() using rule1

 . . .

F A B C ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC

BC A A AC B B AB C C

BC AC AB

43

Note: grouping may not be unique, i.e. We can make grouping in more than one way.

44

Note:

 states

A function is said to be incompletely specified when its value is indifferent (we what value

may take on) or does not exist (never occurring) for certain combinations of input variables. We use

the symbol X or for states.

In the Karnaugh table, the symbol X can take either a 1 or 0 indifferently, so we replace by 1 only

those which helps in making a large group.

Example:

 B C D

inprotected.com

