Chapter4: Boolean Algebra

1. Definition
Boolean algebra derives its name from the English mathematician George Boole 1815 - 1864, who

published two major books, “The Mathematical Analysis of Logic” (1847) and “The Laws of
Thought (1854)”, where he founded the Mathematical theories of logic and probabilities.

Boolean algebra was first used by Claude E. Shannon (research assistant at the Massachusetts
Institute of Technology) for the design of relay switching circuits in 1938. Instead of elementary
algebra where the values of the variables are numbers, Boolean algebra deals only with binary number
system O or 1 (false or true). Boolean algebra is very useful in designing logic circuits used in
computers.

2. Fondamental concepts
2.1 Definition
Boolean algebra is defined with a set of elements (Boolean variables), a set of operators (+ or . and

not), and a number of postulates.

2.2 Boolean variable

A Boolean variable has two values, either O or 1.

2.3 Boolean function
A Boolean function is an expression formed with combination of Boolean variables Connected by
Boolean Operators (+ or . and not). The value of a function may be 0 or 1, depending on its
variables' values.
Example: let 4, B, C three Boolean variables, the following expressions are Boolean functions.

F(A,B)=AB F(A,B)=A+B F(A,B,C)= ABC+ ABC+ ABC

2.4 Principle of duality
To form the dual of an Boolean expression we need to:
- Changing each OR (+) to an AND (.)
- Changing each AND (.) to an OR (+)
- Replacing each 0 by 1 and each 1 by 0
Example: the dual of 1+1=1 is 0.0=0
Note : Each postulate, each theorem and each expression of Boolean algebra has a dual equivalent,

where the Os are replaced by 1s, the 1s by Os, the (.) by (+)and (+) by (.).

2.5 Postulates
Postulates are assumed to be true without any proof or demonstration.
Postulate Dual Postulate
P1 0+0=0 1.1=1

moussa.semchedine@univ-setif.dz 32

Chapter4: Boolean Algebra

P2 1+1=1 0.0=0
P3 1+0=0+1=1 0.1=1.0=0
P4 0=1 1=0

2.6 Boolean Theorems

Assum A, B and C three Boolean variables:

Associative law A+B)+C= A+(B+C)=A+B+C (A.B).C=A.(B.C)=A.B.C
Commutative law A+B=B+A A.B=B.A

Distributive law A.(B+C)=AB+A.C A+(B.C)=(A+B).(A+C)
Identity element A+0=A A.l=A

Complement Law A4 +4 =1 44 =0

Involution A=4

Idempotence law A+A+A+............. +tA =A AAA............ A=A
De Morgan's laws A+B=AB AB=A+B
Absorption law A+A.B=A A.(A+B)=A

Note :

De Morgan's laws can be extended for n variables as:

ABC...=A+B+C +......... A+B+C 4., =ABC....
Note:
If a Boolean theorem/equality is proved, its dual automatically holds and need not to be proved

separately.

2.7 Truth table
The truth table of a Boolean function is a table that gives the results (or outputs) of all possible input
variables. For an n number of variables, 2" combinations of inputs are arranged in columns on the left
and the output result is listed in the rightmost column.

Example: construct the truth table of the Boolean function F
F(4,B,C)=AB+ABC

A |B|C B AB | AB.C | F(A,B,C)
010 O 1 0 0 0
0 |0] 1 1 0 0 0
0O |10 0 0 0 0
0 |1] 1 0 0 0 0
1 {0} O 1 1 0 1
I 0| 1 1 1 0 1
I {1} 0 0 0 0 0
I [1] 1 0 0 1 1

moussa.semchedine@univ-setif.dz 33

Chapter4: Boolean Algebra

Note:
A truth table can be used to prove Boolean algebra theorems and to determine if two Boolean
functions are equivalent or not.

Example: verify the following equality using the truth table

A+A.B=A
A | B |AB|A+AB
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

2.8 Logic gates

Logic gates are a basic building blocks of the electronic circuits, that have one (or more) input and
only one output. The graphic symbol of each logic gate will be presented later in this chapter.

2.9 Boolean operators

There are three basic operators AND, Or, NOT and other derived operators (NAND, NOR, XOR.....)
that are combinations of the basic operations. For each operator we will present the truth table and the
corresponding logic gate.

e NOT (inverter)

A A
0o | 1 4 4|>ofg
| 0
e OR
y B A+B
0 0 0
0 1 1 ; DAJrB
I 0 I
1 1 1
e AND

—| = oo
—| o~ W
—| olo|lo
by e
s
s]

e NAND
4 B 4B
0 0 l 44. —_—
1 0 1
1 1 0
az

34

moussa.semchedine@univ-setir.

Chapter4: Boolean Algebra

e NOR
A4 B A+B
0 0 1 4
0 1 0 ‘ D—AJrB
1 0 0 B
1 1 0

® XOR (Exclusive OR)

4 B A®B
0 0 0
0 1 1 A (@
] i i B ADB
1 1 0

e XNOR
4 B | 4®B
0 0 1 4
0 I 0 Bj[:>%1®3
1 0 0
1 1 1

® Properties of XOR

A®B=AB+ AB
ADB=AXB
A®B=B® A
AB(BOO)=(4®B)®C
A®B=A®B

® Properties of XNOR

A®B=AB+AB
AXB=A®DB
ARXB=B® A
AR(BRC)=(AR B)XC
A®XB=4AQ®B

moussa.semchedine@univ-setif.dz 35

Chapter4: Boolean Algebra

2.10 Operators precedence
From highest to lowest precedence: NOT AND OR. If there are several logical operators of the
same precedence, they will be examined left to right. Note that we must evaluate bracketed expressions

first, if they exist.

3. Representation of Boolean Function
There are many equivalent representations of a Boolean function like: truth table, algebraic form

(canonical form), numerical form, logic diagram , Karnaugh map, Venn diagram

3.1 Truth table

See the section 2.7

3.2 Algebraic form
The Boolean function is expressed in terms from complemented or uncomplemented variables

connected with basic Boolean operators (+ or . and not).
Example: f (A,B)=AB +AB +AB

e Minterm :
A minterm (called also standard product) is a product of all n variables of the function either

complemented or uncomplemented.

Example: ABCD ABCD ABC.D 3 minterms for a function of 4 variables.

e Maxterm :
A maxterm (called also standard sum) is a sum of all n variables of the function either complemented

or uncomplemented.

Example: A+B+C+D A+B+C+D A+B+C+D 3 maxterms for a

function of 4 variables.

3.2.1 Disjunctive canonical form (DCF)
Called also sum of minterms. The Boolean function is expressed as the logical sum of all the

minterms for which the value of the function is 1 in the truth table.

3.2.2 Conjunctive canonical form (CCF)
Called also product of maxterms. The Boolean function is expressed as the logical product of all the

maxterms for which the value of the function is 0 in the truth table.

Note: Disjunctive canonical form (DCF) and Conjunctive canonical form (CCF) are equivalent.

moussa.semchedine@univ-setif.dz 36

Chapter4: Boolean Algebra

Example: Let F(A,B,C) a Boolean function represented by the following truth table.

A | B | C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

1- Show all minterms and maxterms

2- Write the function F in DCF and CCF

A | B | C F
0 0 0 0 +—— A+B+C Maxterm
0 0 1 0 +— A+B+C Maxterm
0 1 0 0 L, A+ E +(C Maxterm
0 1 1 1 . ABC minterm
1 0 0 0 +—— A+B+(C Maxterm
1 0 1 1 — AB.C minterm
! ! 0 1 — ABC minterm
1 1 1 1 — A B.C minterm

(DCF) & F(A,B,C)=A.B.C+ A.B.C +A.B.C +A.B.C

(CCF) & F(AB,C)=(A+B+C) (A+B+C)(A+B+C)(A+B+C)

Note:

Any Boolean function can be expressed as a DCF or CCF. The simplest way is to draw the truth table

and write the two canonical forms.

Example: consider the following Boolean function F(A,B)=(A+ B).(A+ B)

Write the function F in DCF and CCF.
Answer (seen in the course)

(DCF) 2 F(A4,B)=AB+AB

(CCF) = F(A4,B)=(A+B).(4A+B)

moussa.semchedine@univ-setif.dz 37

Chapter4: Boolean Algebra

Note:

If there is a minterm/ maxterm that doesn’t contain all n variables, the form is called SOP (sum of
products)/ POS (product of sums).

To convert SOP/POS to DCF/CCF respectively we use the following rules:

1. Examine the missing variables in each product/ sum which is not a minterm/maxterm.
2. Multiply that product with 1 (e.g: X + X)
3.Add 0 (e.g: X.X) tothat sum
4. Use the distributive laws
5. Remove the redundant terms if necessary
Example: tfind the DCF and CCF respectively for the following functions
F(A4,B,C)=AB
G(4,B,C)=A+B

Answer

F(A,B,C)=AB=AB.1= AB.(C+C)=A.B.C+A.B.C

G(A4,B,C)=(A+B)=(A4+B+0)=(4+B+C.C)=(A+B+C).(A+B+C)
3.3 Numerical form
This form is used as a short notation, where each minterm/maxterm is replaced by the decimal
equivalent.
Example: the numerical forms of the function F (section 5.2.2) are:
F(AB,C.D)= > (3,56,7)
F(AB,CD= [] (0,1,2,4)

3.4 Logic diagram

The logic diagram is a graphical representation of a Boolean function, it consists in replacing each
logic operator by the corresponding logic gate.

Example: Draw the logic diagram of the following function.

F(4,B,C)=AB+BC

moussa.semchedine@univ-setif.dz 38

Chapter4: Boolean Algebra

4. Universal gates
NAND gates and NOR gates are called universal gates, because any Boolean function can be
implemented by using only one of these two. Universal gates allow reducing the circuit design

complexity by reducing the number of different gate types required, and also reducing the number of

transistors needed (minimize manufacturing costs).

e Basic logic operators (Not AND OR) are implemented using only NOR gates

) De-
- A
AB=AB=A4A+B=A+A+B+B)

A=A+ 4

A+ B=A+B+ A+ B

e Basic logic operators (Not AND OR) are implemented using only NAND gates

A{}
o -

A P
B{D,r}

K
(=
Il
k
b

| b

.
vs)
|

.
%
M

b
I
b
I
e
I
gl o
I
e |
o |
I
i
=
o8

Example:

moussa.semchedine@univ-setif.dz 39

Chapter4: Boolean Algebra

1. Express the following expression with only NAND operator AB+C.D

AB+CD=AB+C.D=ABC.D=ABC.D.D

2. Express the following expression with only NOR operator (A+B+C)(A+D)

(A+B+C)Y(A+D)=(A+B+C)(A+D)=(A+B+C)+(A+ D)
Note:

Generally, we prefer SOP (Sum Of Products) form to design the digital circuits using only NAND
gates and POS (Product Of Sums) form to design the digital circuit using only NOR gates.

5. Minimization of Boolean functions
The objective of simplifying logic functions is to reduce the number of terms (reduce the number of

gates) to obtain smaller, faster and cheaper circuit.

5.1 Algebraic minimization
It consists in applying the theorems/laws of Boolean algebra (see sections 2.5 and 2.6) in order to

reduce the number of variables or terms.

Useful simplifications

Rulel: A+A=1 AA=0

Rule2: AB + AB = A (A + B)(A+ B)= 4
Rule3: A+ AB =4 A(A+B) = 4
Ruled: A+ AB =A + B A(A + B)= AB

Example: minimize the following Boolean function using algebraic manipulation
1. F(4,B,C) = AB + BC + BC
= AB+B.(C+C) using rulel
= AB+B using rule4
=A+B

2 F(A,B,C) = ABC + ABC + ABCD
= AB (C+C) + ABCD using rulel
= AB + ABCD
= A (B + B (CD)) using rule4
= A (B+ CD)

moussa.semchedine@univ-setif.dz 40

Chapter4: Boolean Algebra

3. Add an existing term

F(A4,B,C)= ABC + AB.C + AB.C+ AB.C

=ABC + ABC + ABC + ABC + ABC + AB.C
=BC.(A+A) + AC.(B+B) + AB.(C+C) using rulel

= BC+AC+AB

4. Simplify the complement of a function

F(4,B,C)=Y (23456,

F(4,8.C)=3(0.1)

= ABC+ABC

= Z.E.(C + E’) using rulel

= AB

F(A4,B,C) = Z_Z_S =A+B using De Morgan's law

5.2 Karnaugh Map

The algebraic simplification method becomes very difficult and cumbersome if the number of
variables or terms increase. Karnaugh's method is a faster and can be used to solve Boolean functions
of up to 6 variables.

e Adjacency principle
Two Boolean terms are adjacent when they contain the same variables and differ in the form of exactly

one variable.

Example:
The following terms are adjacent The following terms are not adjacent
AB+ AB =B AB + AB
ABC + ABC = AC AB.C + ABC
AB.CD + ABCD = ABD AB.CD + ABCD

e Karnaugh’s principle

- A Karnaugh map is a graphical form of a truth table consists of adjacent cells.
- The number of cells equal to 2~, where N is the number of variables.
- Rows and columns are labeled using Gray code.

- Karnaugh maps for 2, 3,4 and 5 variables are shown below.

moussa.semchedine@univ-setif.dz 41

Chapter4: Boolean Algebra

- _AB
cp 00 01 11 10
A _AB 00
B 0 1 c 00 01 11 10
0 0 o
] 1 1
10
ABC
N
D.E\ D00 001 011 010 110 111 101 100
00
01
11
10

- Each minterm = cell =1 , Each maxterm = cell =0
- For simplicity, the maxterms (0's) are omitted
- To make implementation of Karnaugh map easier, the function must be represented in one of

the two canonical forms (DCF or CCF).

e Simplification rules
- Identify the adjacent cells containing 1 and make them in group of of 2N (32,16,8,4,2,1).
- Make the largest possible group of 1’s. E.g. 1 group of 4 instead of 2 groups of 2.
- One or more cells can be common to several groupings.
- The objective is to cover all the 1's on the map with minimum number of groups (fewer terms) and to
which contain the maximum cells of 1(fewer variables).
- Two cells are adjacent when they are located side by side horizontally or vertically
- Two cells located at the ends of the same row or of the same column are adjacent (cylindrical shape)
- The four corner cells are adjacent
- Diagonal cells are not adjacent
e Writing simplified expression
- Moving left to right or up to down in a group. The variables which change are ignored.
o A group of 2 1's eliminates one variable.
o A group of 4 1's eliminates two variables.
o A group of 8 1's eliminates three variables, and so on.
- Combine the unchanged variables by AND (.) operator
- The final expression is the sum (OR operator) of the previous terms.

- For the 1’s which are not grouped, write the complet correcsponding term

moussa.semchedine@univ-setif.dz 42

Chapter4: Boolean Algebra

D NP [& Snny
\J 1|1
F=BC F=A4B F=BC F=B F=C
™ ™ A DN
3 A \ RV
~— - v
S M/
J 1
F=BC +CD F=B+ACD —BCD+ ACD + ABC -
=BD+ACD+ABC+4BC
§B 00 01 11 10, CDAB 00 01 1 10
o | 1] 1\‘ B 00 m
"D o1 [(T
11 1 1
AL]

F(4,B.C.D)y=AB+BD+BCD

[\

1

v

NS

O

=CD+AD +BD+ABC + ABC + ABCD.

1

F(4,B.C,D)=CD+ABC+ ABC.D

c 00 01 11 10

Jawa
N\

F(AB.C)=C+A4B

AB
00

01 1

10

1
[1\ ABC + ABC = AB

1 (1 / 1 Y— n D A
‘ _L’ ABC + ABC = AC

ABC+ABC = BC

F(4,B.C)y= AB+AC+BC

Note: grouping may not be unique, i.e. We can make grouping in more than one way.

[—

[>

M

\/

d
-

—BC+AB+ AC

moussa.semchedine@univ-setif.dz

43

Chapter4: Boolean Algebra

Note: we can use maxterms instead of minterms (regrouping 0’s)

11 1|1
1/ 1] 1] 1
1 1@ o)1
1 1)1 1
=B+C+D

e Dont’ Care states
A function is said to be incompletely specified when its value is indifferent (we don’t care what value
may take on) or does not exist (never occurring) for certain combinations of input variables. We use
the symbol X or @ for don’t care states.
In the Karnaugh table, the symbol X can take either a 1 or 0 indifferently, so we replace by 1 only
those which helps in making a large group.

Example:

o
N

moussa.semchedine@univ-setif.dz 44

References

O 0 I N »n B~ W N =

Library of faculty

. Architecture des ordinateurs. Jean-Jacques Schwarz 2005

. Architecture et technologie des ordinateurs. Zanella, Paolo 2005

. Architecture des ordinateurs. Philippe Darche 2002

. Architecture des machines et des systbmes informatiques. Alain Cazes 2003

. Architecture de I’ordinateur. Robert Strandh 2005

. Architecture de I’ordinateur. Andrew Tanenbaum 2005

. De I’Algl.bre de Boole aux circuits numériques. Karima Khadidja Mokhtari 2014
. Logique combinatoire et composants numériques. Mouloud Sbai 2013

. Introduction aux circuits logiques. Letocha Jean 1985 (Bibliothl.que centrale)

Downloadable books

. D A Patterson & J L Hennessy, Computer Organization and Design : The hardware/software

interface, Morgan-Kaufmann (Fifth edition) 2013

. A S Tanenbaum and T Austin, Structured Computer Organization, Pearson (International edition),

2012

. R E Bryant & D R O’Hallaron, Computer Systems : A Programmer’s Perspective, Pearson (Global

edition) 2015

Computer Organization and Architecture 8TH EDITION by William Stallings. Prentice Hall,
Inc.,2010

Computer System Architecture (3rd Edition) M. Morris Mano 1992

