

Digital Image Processing

- Lecture notes 2024
- F3i
- Evaluation : 60% exam 40 % continuous
- Dr. Semchedine Moussa

moussa.semchedine@univ-setif.dz

• Facebook

image processing F3I

Image Processing F3I

@image.processingF3i · Community College

+ Add a Butto

- Know the different types of digital images
- Manipulate digital images
- Learn basic image operations

Plan

- 1. General introduction
- 2. Digitization
- 3. Digital image
- 4. Arithmetic and logical operations
- 5. Study of histograms
- 6. Thresholding
- 7. The noise
- 8. Filtering
- 9. Edge detection
- 10. Image segmentation

Chapter 1: General introduction

"One picture is worth more than ten thousand words". Chinese proverb

First photograph 1826

from the window of Nicéphore Niépce's house

Camera obscura principle

- Black box with a hole
- Outside light can only enter through a small hole
- An inverted image forms on the wall opposite the hole (left to right and bottom to top)

History

Image vs Picture vs Photo ?

Examples:

- All **images** of the wedding are in my laptop
- I love taking **photos** of nature
- The painter created the **picture** of Eiffel tower
- The children were drawing **pictures** of their pets.

Digital image

« A digital image consists of a finite number of small spots of color.
These spots are called pixels, a contraction of "picture elements", …
The image is **stored** (numeric representation) in the form of a matrix where each element consists of single pixel »

Digital image processing

"Digital image processing is the use of algorithms and mathematical models to **process** and **analyze** digital images. The goal of digital image processing is to **enhance** the quality of images, **extract** meaningful information from images"

Digital image processing

Input: images → **Output**: Enhanced images

Image restoration

Image analysis

The extraction of meaningful information from images

Input: images → **Output**: relevant information

Computer vision

"Subcategory of artificial intelligence (AI) that focuses on building and using digital systems to **process**, **analyze** and **interpret** visual data. The goal of computer vision is to enable computing devices to correctly **identify** an object or person in a digital image and **take appropriate action**"

Computer vision

"Computer vision is the science of endowing computers or other machines with vision, or the ability to see."

Erik G. Learned-Miller, University of Massachusetts

Image synthesis

"The process of artificially generating(creating) images that contain some particular desired content"

- Medical imaging
 - Better Diagnosis
 - Eliminate the need for surgery
 - Complicated surgeries (Robot-assisted surgery)....

- Satellite Image Processing
 - Cadastre and Land Records
 - Crime Mapping
 - Global Climate Change
 - Agriculture
 - Forestry...

- Robotics
 - Games
 - Industrial Vision
 - Automatic sorting system

- Biometrics
 - Fingerprint
 - Iris recognition
 - Facial recognition system.....

• Virtual reality / Augmented reality/ Gaming

- Autopilot driving
- Flight simulator

- Target detection
- Remote monitoring

Multidisciplinary

Chapter 2: Digitization

Definition

"Is the process of converting an electrical signal, often from a sensor, into a digital signal that a computer can read"

" Digitization is the operation of converting a real object (**continuous signal**) from the physical world (image, sound, etc.) into a digital format (**discrete signal**) "

Definition

There are two steps to digitize an image:

- 1. Sampling
- 2. Quantization

Digitization = Sampling + Quantization

Sampling

The process of measuring the instantaneous values of continuoustime signal in a discrete form. It produces a series of discrete values called samples,

Quantization

- Quantization consists of assigning a level to any value taken from the signal during sampling
- Each level is coded on N bits.
- An N-bit converter has 2^N quantization levels.

Numérisation

 The image is a 2D signal (x,y) which represents a 3D reality (x,y,z)

Scene element

"Digitizing the coordinate values is called **sampling**. Digitizing the amplitude values is called **quantization**".

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	255	255	0	0	0	0	0
0	0	0	255	255	170	0	0	0	0
0	0	255	170	170	255	0	0	0	0
0	0	255	170	170	85	85	0	0	0
0	170	170	255	85	85	170	170	0	0
0	0	85	85	170	170	170	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Chapter 3: Digital image

Bitmap representation (Matrix)

Types of digital images

- 1. Binary images
- 2. Grayscale images
- 3. Color images
- 4. Indexed Images

Binary

Grayscale

1. Binary images

- Two colors: black (0) and white(1)
- $I(x,y) \in \{0, 1\}$
- pixel coded on 1 bit
- Examples: Plan, digital fingerprint, ...

1. Binary images

- Advantages: easy to acquire / low storage /simple processing....
- **Disadvantages**: limited application....

2. Grayscale images

- 256 gray level, $I(x,y) \in \{0, 255\}$
- pixel coded on 8 bits

The total number of gray levels is larger than the human visual system requirements (which, in most cases, cannot appreciate any improvements beyond 64 gray levels),

3. Color images

- "The human eye combines 3 primary colors (using the 3 different types of cones) to discern all possible colors".
- color space (most used) : R G B (Red, Green, Blue)
- Colors are just different light frequencies

3. Color images

- A three-dimensional RGB matrix
- pixel coded on 24 bits (16,777,216 colors)
- $I(x,y, R) \in \{0, 255\}, I(x,y, G) \in \{0, 255\}, I(x,y, B) \in \{0, 255\}$

3. Color images

												an L					
49	55	56	57	52	53	64	76	82	79	78	78	66	80	77	80	87	77
58	60	60	58	55	57	93	93	91	91	86	86	81	93	96	99	86	85
58	58	54	53	55	56	88	82	88	90	88	89	83	83	91	94	92	88
83	78	72	69	68	69	125	119	113	108	111	110	135	128	126	112	107	106
88	91	91	84	83	82	137	136	132	128	126	120	141	129	129	117	115	101

96 103 112 108 111 107

105 108 114 114 118 113

99 109 108 112 109

93 107 101 105 102

3. Color images

3. Color images

Color spaces

Many color spaces: RGB, HSL, CMYK...

- **RGB** : Red, Green, Blue
- HSL : Hue, Saturation, Lightness
- CMYK: Cyan, Magenta, Yellow, Black

4. Indexed image

- The color of each pixel is determined by an index value inside an RGB color table (**color map**)
- Each row of the palette matrix = **RGB** value

4. Indexed image

- Modifying a value in the color map →modification of the color for all pixels referring to this index.
- Advantages: reduce memory space/ transmission time

4. Indexed image (example)

Indexed image 16 colors

Palette[0]=000	001	000	13	13	13	13	13	13	13	0	0	13	13	13	13	13	13	13
Palette[1]=130	000	023	13	13	13	13	13	13	13	13	12	13	13	13	13	13	13	13
Palette[2]=185	000	000	13	13	13	13	13	13	13	13	0	0	13	13	13	13	13	13
Palette[3]=220	000	000	13	13	13	13	0	4	5	3	0	0	4	0	0	13	13	13
Palette[4]=255	000	000	13	13	0	11	11	3	2	6	12	6	3	11	10	9	13	13
Palette[5]=255	000	083		-	-		-							-	-		-	
Palette[6]=165	042	000	13	0	9	9	9	11	11	14	14	11	9	9	9	4	9	13
Palette[7]=219	074	001	13	10	8	9	10	9	9	9	9	9	9	4	10	9	4	0
Palette[8]=255	083	000	13	10	15	15	10	10	10	10	9	4	4	4	8	9	8	0
Palette[9]=255	106	104	13	10	15	15	10	10	8	8	10	4	4	4	4	8	8	0
Palette[10]=255	115	071	12	10	o	0	Л	10	Q	0	10	Л	Л	Л	10	Л	Л	0
Palette[11]=255	148	115	ТЭ	ΤU	0	0	4	ΤU	0	0	ΤŪ	4	4	4	ΤU	4	4	0
Palette[12]=124	238	018	13	0	4	4	4	10	8	4	10	4	4	4	4	4	4	13
Palette[13]=205	207	203	13	0	4	15	4	8	4	3	4	4	4	4	4	4	3	13
Palette[14]=253	200	180	13	13	4	4	4	4	7	4	3	4	4	3	7	6	0	13
Palette[15]=255	210	212	13	13	0	3	4	3	7	8	7	4	4	3	6	2	13	13
				13	13	13	0	2	2	3	3	2	6	3	2	6	13	13	13
				13	13	13	13	0	6	1	1	0	1	2	1	13	13	13	13

1. Size (weight)

Theoretical size = Definition x size necessary to represent a pixel Real size= Theoretical size + file header

File header = meta-informations (height, width, type, date....)

- 1. Size
- Binary Image

Pixel = 1 bit

Example:

- Image 300x400 pixels
- Theoretical size = 300x400= 120000 bits= 15000 Bytes= 14,64 KB
- Grayscale images

Pixel = 8 bits

Example:

- Image 300x400 pixels
- Theoretical size = **300x400x8**= **960000**bits

= 120000 Bytes= 117,18 KB

- 1. Size
- Color image

Pixel = 24 bits

Example:

- Image 300x400 pixels
- Theoretical size = **300x400x24**= **2880000**bits= **360000** Bytes = **351,56** KB
- Indexed image (256 colors)
 Example:
- Image 300x400 pixels
- For 256 colors, size of color-map= 256x8x3 bits = 6144 bits = 768 Bytes.
- Theoretical size = 300x400x8 bits+ 6144 bits
 = 960000bits= 120768 Bytes= 117,93 KB

Exercise

Let an indexed image (128 colors) of 500x700 pixels.

Calculate the theoretical size en bits.

Solution

Color-map (size)= 128x8x3 bits = 3072 bitstheoretical size= 500x700x8 bits+ 3072 bits = 2803072 bits

2. Luminance

- "Luminance refers to the absolute amount of light emitted by an object per unit area ".
- A very bright surface \rightarrow high luminance
- Black surface \rightarrow zero luminance

3. Contrast

"Contrast is an important factor in any subjective evaluation of image quality. Contrast is created by the difference in luminance reflected from two adjacent surfaces"

3. Contrast

A grey square on different backgrounds

3. Contrast

- Well contrasted grayscale image = good distribution of gray levels
- Low contrast grayscale image = most pixels having very close gray levels
- Contrast is defined as the ratio $\frac{\max \min}{\max + \min}$

where **max** and **min** are the maximum and minimum gray levels.

4. Resolution

4.1 Spatial resolution

- The density of pixels over the image
- Unit: pixels per inch (PPI)
- Greater spatial resolution \rightarrow more pixels used to display the image
- Higher resolution → image more clear (more detail can be seen: precision)

4. Resolution

4.1 Spatial resolution

Smaller cell size Higher resolution Larger cell size Lower resolution

https://www.jbarisk.com/news-blogs/dem-spatial-resolution-what-does-this-mean-for-flood-modellers/

 256×256

 128×128

 $200 \ge 278$

50 X 70

12 X 18

4. Resolution

4.1 Tonal resolution

The number of bits used to represent a pixel (number of colors) •

4. Resolution

4.1 Tonal resolution

4 bits

8bits

 Resolution of a screen is the number of pixels that can display

Resolution	Measurements (In pixels)	Pixel count
8k (Ultra HD)	7,680×4,320	33,177,600
4k (Ultra HD)	3,840×2,160	8,294,400
1080p (Full HD)	1,920×1,080	2,073,600
720p (HD)	1,280×720	921,600
480p (SD)	640 × 480	307,000

15360 × 8640= 132.7 megapixels

Chinese manufacturer BOE (2023)

iPhone 15 Pro Max

6.7"

Super Retina XDR display 6.7-inch (diagonal) all-screen OLED display 2796-by-1290-pixel resolution at 460 ppi

Resolution problem!

"Mario was given his cap A red cap was added because programmers found it difficult to create the hair movement that would occur when the character jumped"

Size= definition/ spatial resolution

- For example, with a resolution of **200 ppi** and a definition

of **1280x1024**

- We obtain an image of 6.4x5.12 inches = 16x13 cm.

Exam 2022

Two image formats:

1. bitmap

2. Vector

1. Bitmap images (raster)

The image is a matrix of pixels.

more zoom in → more the pixels become apparent (blurry or distorted)

2. Vector images

- "A vector image is an image created using mathematical formulas to represent the image".
- Describing elementary geometric shapes (square, circle, ellipse, curve, etc.)
- It can be scaled to any size without losing quality.

Image formats

2. Vector images

• Each shape has a number of attributes such as:

the color, the thickness of the line, coordinates....

 Used when graphics are required in different scales, with the highest quality: geometric designs, logos, icons, pictograms, technical illustrations, product illustrations, fonts and the creation of layouts

bitmap vector Form: continuous line Pixel cc Position in matrix 80, 43 Starting point (12,98) Arrival point (180, 276) Color RGB= 255,0,0 (red) Thickness: 4 mm

77

Color RGB= 255,0,0 (red)

Image formats

Vector bitmap

Image formats

Bitmap images

Advantages

- Well suited to complex images (photography): realism
- Richness in details and colour gradations
- More accessible and shareable (widespread use):
 Web, camera, social media.....
- Each pixel can be edited and adjusted individually

Disadvantages

- Pixelation problem \rightarrow Zoom in (blurred contours and details)
- Higher quality \rightarrow larger file size

• Vector images

Advantages

• Resizable without loss of quality

ab ab

 Well adapted to geometric transformations (change of scale, rotation, translation, etc.)→ Easy to edit

• Smaller file size

Images vectorielles

Disadvantages

- Not suitable for complex images (photos)
- Format compatibility problem
- Vectorization of bitmap images \rightarrow loss of details

Standard formats

Bitmap formats

- BMP (Bitmap)
- TIF or TIFF (Tagged Image File Format)
- PNG (Portable Network Graphics)
- JPG (JPEG) (Joint Photographic Experts Group)
- GIF (Graphics Interchange Format)

Other formats:

PSD (PhotoShop Document),

HEIF (High Efficiency Image File Format)

Avif

WebP (Google)....

Formats Vectoriels standards

- WMF (Windows Metafile Format)
- SVG (Scalable Vector Graphics)
- PS (PostScipt), EPSF (Encapsulated PostScript File)
- Al (Adobe Illustrator)
- PDF (Portable Document Format)
- DWG (DraWinG) AutoCAD drawing